2023年福州市普通高中毕业班第二次质量检测答案与评分细则---定稿(1)

2023-11-22 · 12页 · 671.1 K

2023年福州市普通高中毕业质量检测数学试题参考答案评分细则一、单项选择题:1-8DBCABDCD8【解析】因为f(x)+g(x−32)=,所以f(x+32)+g(x)=,又f(12−x)+g(x)=,则有f(x+31)=f(−x),因为fx(+1)是奇函数,所以f(x+11)=−f(−x),可得f(x+31)=−f(x+),即有f(x+2)=−f(x)与f(x+42)=−f(x+),即f(x+=4)f(x),所以fx()是周期为4的周期函数,故gx()也是周期为的周期函数.因为−f(−x)=f(x+2),所以f(−=x)f(x),所以fx()为偶函数.故A错误;由fx(+1)是奇函数,则f(10)=,所以f(30)=,又f(2)+f(4)=f(2)+f(0)=0,20所以f(k)=5f(1)+f(2)+f(3)+f(4)=0,所以C选项错误;k=1由f(10)=得g(02)=,所以B选项错误;因为g(2)=2−f(5)=2−f(1)=2,g(1)32+g()=−f(4)+2−f(64)=−f(4)+f(24)=,20所以g(0)+g(1)+g(2)+g(3)=8,所以g(k)=5g(0)+g(1)+g(2)+g(3)=40,k=1所以D选项正确.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.BCD10.BD11.BC12.AD12xy+=3cos,1322x=−3cossin,12【解析一】由x+y+y=3,令可得243y=2sin,y=3sin,2故,故正确;错误;2xy+=23cos−2sin+2sin=23cos−23,23AB22x+−=−=−yxy32xy32(3cos−sin)2sin=−54sin2+1,9,故C错误;D6正确,故选AD.12【解析二】令2x+=yt,则y=−t2x代入x22+xy+y=3,整理可得,3x22−3tx+t−3=0,因为xR,所以=9t2−12(t2−3)=−3(t2−12)0,解得−23t23,故A正确;B错数学参考答案第1页共12页误;由x2+xy+y2=33x2+y2=−xy,因为x22+y2xy,所以32−xyxy,所以−31xy,又x22+xy+y=32−xy,从而13−2xy9,故C错误;D正确,故选AD.v212【解析三】令x=+uv,y=−uv,代入x22+xy+y=3,得u2+=1,3令uv==cos,3sin(0,2π).π2x+y=3u+v=3cos+3sin=23sin+−23,23,故A正确,B错误;3x2+y2−xy=u2+3v2=cos2+9sin2=1+8sin21,9,故D正确,C错误;故选AD.三、填空题:本大题共4小题,每小题5分,共20分.2413.−14.0.6415.1116.xy−+40=715【解析一】:令f(x)=x32−3x+6x+2,则f(x)=3x2−6x+6,设Pm(,1),Q(n,f(n)),依题意f(m)=f(n),所以3m22−6m+6=3n−6n+6,则m22−n=2(m−n),显然mn,则mn+=2,因为f(x)=(x−1)3+3(x−1)+6,所以fx()的图象关于点(1,6)中心对称,所fn()+1以点P与点Q关于点(1,6)对称,所以=6,则fn()=11.2215【解析二】:令,因为f(x)=3(x−1)+30,故fx()在R上单调3232递增,令x−3x+6x+2=1,设其根为xP,得xPPP−3x+6x=−1.由于fx()在点P处的切线与在点Q处的切线平行,得f(x)=k存在两实根,其中一个为xP,设另一个为xQ.即23x−6x+6=k两根为xP,xQ,由韦达定理得xxPQ+=2,则xxQP=−2,从而3232f(xQQQQPPP)=−++=−x3x6x2(2x)−−3(2x)+−+6(2x)232232=−+xPPPPPPPPP6x−12x+−83x+12x−+−12126x+=−−2(x3x+6)1011x+=.16【解析一】:由条件得B点为线段MN中点,设B点坐标为y(,)xy00,得Mx(20,0)、Ny(0,20),由|MA|:|AB|=1:2得A坐标N225xy00xy为A(,),将A、B坐标分别代入+=1中,得B33126A22MxOxy00+=1,126x0=−2,解得则M、N坐标分别为(−4,0)、2225xyy0=2,00+=1,12969(0,4),直线l的方程为.数学参考答案第2页共12页m16【解析二】:设直线l方程为y=+kxm(km,0),可得M−,0,Nm(0,),根据k5mmmm|MA|:|AB|:|BN|=1:2:3得A,B坐标分别为−,,−,.将,坐标代入C方66k22k程中,可得25mm22+=1,22221236k263625m+2mk=1236k,即两式相减得mk=4,222222mm+=1,m+2mk=124k,124k264将其代入m2+2m2k2=124k2,得k=1,从而直线的方程为xy−+40=.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)【命题意图】本小题主要考查正弦定理、余弦定理、三角恒等变换、基本不等式等基础知识;考查运算求解能力;考查化归与转化思想、函数与方程思想等;导向对发展逻辑推理、数学运算等核心素养的关注;体现基础性和综合性.满分10分.【解析一】(1)由余弦定理可得b2=c2+a2−2accosB,代入b2−=a22c2,得到(c2+a2−2accosB)−a2=2c2,······································1分化简得c2+=2accosB0,即c+=2acosB0,····················································································2分由正弦定理可得sinCAB+=2sincos0,即sin(ABAB+)+2sincos=0,····································································3分sinABABABcos+cossin+2sincos=0,3sinABABcos=−cossin,·········································································4分tanB可得=−3.·························································································5分tanA(2)由(1)可知tanBA=−3tan,所以tanA与tanB异号,又b2−a2=20c2,故ba,则有BA,因为AB,(0,π),故A为锐角,B为钝角,则C为锐角,···································6分tanABAAA+−tantan3tan2tan所以tanCAB=−tan(+)===······················7分tanABAAtan−1−3tan22−13tan+1223==,·························································8分13tanA+233tanA3π等号当且仅当tanA=,即A=时成立,····················································9分36π所以C的最大值为.················································································10分6数学参考答案第3页共12页sinBb【解析二】(1)由正弦定理可得:=,··················································1分sinAab2+−c2a2cosA由余弦定理可得:=2bc,·························································2分cosBa2+−c2b22acb2+−c2a2tanBsinBcosAbb2+−c2a2则==2bc=,········································3分tanAsinAcosBaa2+−c2b2a2+−c2b22actanBc22+2c因为b2−=a22c2,所以==−3.···················································5分tanAc22−2ca2+−b2c2(2)cosC=·············································································6分2abba22−ab22+−=2······································································7分2ab3ab22+3ab==+4ab44ba32163=.······················································································8分2π所以C,等号当且仅当ba22=3时,即ba=3时成立,·································9分6π所以C的最大值为·················································································10分6【解析三】(1)由b2−=a22c2,由正弦定理可得,sin2BAC−=sin22sin2,··········1分因为sin2BABBABAA−sin2=sin2−sin2sin2+sin2sin2−sin2=sin2BAABBAAB(1−sin2)−sin2(1−sin2)=sin2cos2−sin2cos2=(sinBABABABAABBAcos+cossin)(sincos−cossin)=sin(+)sin(−),···············3分又因为ABC++=π,所以sinCAB=+sin(),所以sin(ABBAAB+)sin(−)=2sin2(+),因为0+ABπ,所以sin(AB+)0,所以sin(BAAB−)=2sin(+),化简得−=3sinABBAcossincos,·································································4分tanB可得=−3.·························································································5分tanA(2)同解析一.························································································10分数学参考答案第4页共12页18.(本小题满分12分)【命题意图】本小题

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐