2022—2023衡水中学下学期高三年级一调考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。共4页,总分150分,考试时间120分钟。第Ⅰ卷(选择题共60分)一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,,则A. B. C. D.2.已知复数满足,则A. B. C. D.53.已知,且,则A. B.C. D.4.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项之差成等差数列.现有一高阶等差数列,其前7项分别为1,2,4,7,11,16,22,则该数列的第100项为A.4923 B.4933 C.4941 D.49515.已知抛物线的焦点为,点在上,点在准线上,满足(为坐标原点),,则的面积为A. B. C. D.6.碳达峰,是指在某一个时点,二氧化碳的排放不再增长,达到峰值之后开始下降;碳中和,是指企业、团体或个人测算在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”.某地区二氧化碳的排放量达到峰值。亿吨后开始下降,其二氧化碳的排放量S(单位:亿吨)与时间基(单位:年)满足函数关系式,已知经过5年,该地区二氧化碳的排放量为亿吨.若该地区通过植树造林、节能减排等形式,能抵消自身产生的二氧化碳排放量为亿吨,则该地区要实现“碳中和”至少需要经过(lg2≈0.3)A.28年 B.29年 C.30年 D.31年7.从2,3,4,5,6,7,8,9中随机取两个数,这两个数一个比大,一个比小的概率为.已知为上述数据中的x%分位数,则x的取值可能为A.50 B.60 C.70 D.808.已知是函数的零点,是函数的零点,且满足,则实数的最小值是A. B. C. D.二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。9.已知向量,,则A. B.C.向量与的夹角为 D.向量在向量上的投影向量为10.已知函数,若函数的部分图象如图所示,则关于函数,下列结论正确的是A.的图象关于直线对称B.的图象关于点对称C.在区间上的单调递减区间为D.的图象可由的图象向左平移个单位长度得到11.已知分别为圆与圆上的两个动点,为直线上的一点,则A.的最小值为B.的最小值为C.的最大值为D.的最小值为12.已知正四面体的棱长为,其所有顶点均在球的球面上.已知点满足,,过点作平面平行于和,平面分别与该正四面体的棱相交于点,则A.四边形的周长是变化的B.四棱锥体积的最大值为C.当时,平面截球所得截面的周长为D.当时,将正四面体绕旋转90°后与原四面体的公共部分的体积为三、填空题:本题共4小题,每小题5分,共20分。13.若命题“”是假命题,则实数的最大值为.14.定义在R上的奇函数满足,且在区间上是增函数,给出下列三个命题:①的图象关于点(2,0)对称;②在区间上是减函数;③其中所有真命题的序号是.15.为检测出某病毒的感染者,医学上可采用“二分检测法”:假设待检测的总人数是,将2m个人的样本混合在一起做第1轮检测(检测一次),如果检测结果为阴性,可确定这批人未感染;如果检测结果为阳性,可确定其中有感染者,则将这批人平均分为两组,每组2m-1人的样本混合在一起做第2轮检测,每组检测1次……依此类推,每轮检测后,排除结果为阴性的那组人,而将每轮检测后结果为阳性的组再平均分成两组,做下一轮检测,直到检测出所有感染者(感染者必须通过检测来确定).若待检测的总人数为8,采用“二分检测法”检测,经过4轮共7次检测后确定了所有感染者,则感染者人数的所有可能值为;若待检测的总人数为,且假设其中有不超过2名感染者,采用“二分检测法”所需的检测总次数记为,则的最大值为.16.已知椭圆的左、右焦点分别为,为上任意一点(异于左、右顶点),点为的内心,则的最大值为.四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。17.(10分)已知数列的首项,且满足,设.(1)证明:数列为等比数列;(2)若,求满足条件的最小正整数.18.(12分)记的内角的对边分别为,已知,是边上的一点,且.(1)证明:;(2)若,求.19.(12分)2022年全国羽毛球锦标赛于12月16日在厦门举办,受此鼓舞,由一名羽毛球专业运动员甲组成的专业队,与羽毛球业余爱好者乙、丙组成的业余队进行友谊比赛,约定赛制如下:业余队中的两名队员轮流与甲进行比赛,若甲连续赢两场,则专业队获胜;若甲连续输两场,则业余队获胜;若比赛三场还没有决出胜负,则视为平局,比赛结束.已知各场比赛相互独立,每场比赛都分出胜负,且甲与乙比赛,甲赢的概率为;甲与丙比赛,甲赢的概率为,其中.(1)若第一场比赛,业余队可以安排乙与甲进行比赛,也可以安排丙与甲进行比赛.请分别计算两种安排下业余队获胜的概率;若以获胜概率大为最优决策,问:第一场业余队应该安排乙还是丙与甲进行比赛?(2)为了激励专业队和业余队,赛事组织规定:比赛结束时,胜队获奖金13万元,负队获奖金3万元;若平局,两队各获奖金4万元,在比赛前,已知业余队采用了(1)中的最优决策与甲进行比赛,设赛事组织预备支付的奖金金额共计X万元,求X的数学期望E(X)的取值范围.20.(12分)如图,圆锥的高,底面圆的半径为,延长直径到点,使得,分别过点作底面圆的切线,两切线相交于点是切线与圆的切点.(1)证明:平面平面;(2)若直线与平面所成角的正弦值为,求点到平面的距离.21.(12分)已知双曲线的左焦点为,点是上的点.(1)求的方程;(2)已知过坐标原点且斜率为的直线交于两点,连接交于另一点,连接交于另一点.若直线经过点,求直线的斜率.22.(12分)已知函数.(1)若,求曲线在点处的切线方程;(2)若对任意恒成立,求的取值范围.数学参考答案一、选择题1,B【解析】由题意得,所以.2.C【解析】设,由题意得,解得,,所以.3.B【解析】由题意得,解得或.又,所以,则,,所以,,,,故ACD错误、B正确.4.D【解析】设该高阶等差数列为,则的前7项分别为1,2,4,7,11,16,22.令,则数列为1,2,3,4,5,6,…,所以数列是首项为1,公差为1的等差数列,所以,即,故.5.A【解析】由题意得抛物线的焦点的坐标为,准线的方程为,设准线与轴的交点为如图,由题知.由抛物线的定义知.又,所以是等边三角形,因为,所以,所以,所以的面积为.6.C【解析】由题意得,即,所以,令,则,即,即,可得,故.7.C【解析】由题意得从2,3,4,5,6,7,8,9中随机取两个数有种不同的结果,其中一个数比大,一个数比小的不同结果有种,所以,整理得,解得或.当时,数据中的分位数是第3个数,则,解得,故所有选项都不满足;当时,数据中的分位数是第6个数,则,解得,故ABD不满足、C满足.8.A【解析】的定义域为,,当时,,单调递减;当时,,单调递增,所以,所以为方程的唯一实根,即,故,即,解得.因为是4的零点,所以方程在区间上有实根,即在区间上有实根,即在区间上有实根.令,,则.设,则,易知在区间上单调递增,在区间上单调递减.又,,所以,,所以,即,故实数的最小值是-1.二、选择题9.ABD【解析】由题意得,所以=4,故A正确;,故B正确;因为,且,所以,故C错误;向量在向量上的投影向量为,故D正确.10.ABC【解析】因为所以,所以,又,所以(舍去)或,因为,所以,所以,当时,,所以的图象关于直线对称,故A正确;当时,,所以的图象关于点对称,故B正确;当,,即,,时,单调递减,则当时,在区间上单调递减,所以在区间上的单调递减区间为,故C正确;因为,故D错误.11.AC【解析】因为圆的标准方程为,所以其圆心为,半径为,因为圆的标准方程为,所以其圆心为,半径为,设点关于直线对称的点为,则解得即.如图,连接交直线于点,连接,此时三点共线,最小,则最小,所以3,故A正确、B错误;因为,所以当取到最大值且点共线时,取到最大值.由图可知,,所以的最大值为,故C正确,D错误。12.BCD【解析】在棱长为2的正方体中,知正四面体的棱长为,故球心即为该正方体的中心,连接,设,因为,,所以四边形为平行四边形,所以.又平面平面,所以平面.因为平面,,,平面,所以平面平面.对于A,如图①,因为平面平面,平面平面,平面平面,所以,则,即同理可得,,,,所以四边形的周长,故A错误;对于B,如图①,由A可知,,且,,因为四边形为正方形,所以,所以四边形为矩形,所以点A到平面的距离,故四棱锥的体积与之间的关系式为,则.因为,所以当时,,单调递增;当时,,单调递减,所以当时,取到最大值,故四棱锥体积的最大值为,故B正确;对于C,正四面体的外接球即为正方体的外接球,其半径.设平面截球所得截面的圆心为,半径为,当时,.因为,则,所以平面截球所得截面的周长为,故C正确;对于D,如图②,将正四面体绕旋转90°后得到正四面体,设,,,,连接,因为,所以分别为各面的中心,两个正四面体的公共部分为几何体为两个相同的正四棱锥组合而成,又,正四棱锥的高为,所以所求公共部分的体积,故D正确.三、填空题13.【解析】由题知命题的否定“”是真命题,令,则解得,故实数的最大值为.14.①②【解析】由题意知,又,所以,所以,即,则,所以是周期为4的函数,且,即,所以的图象关于点(2,0)对称,故①正确,是真命题;因为为奇函数,且在区间上是增函数,所以在区间上是增函数,又,所以的图象关于直线对称,所以在区间上是减函数,故②正确,是真命题;而,故③错误,是假命题.15.1或2【解析】若待检测的总人数为8,经过4轮共7次检测,则第1轮需检测1次,第2轮需检测2次,每次检查的均是4人组;第3轮需检测2次,每次检查的是有感染者的4人组均分的两组,每组2人;第4轮需检测2次,每次检查的是有感染者的2人组分成的两组,每组1人,则感染者人数为1或2.当待检测的总人数为,且假设其中有不超过2名感染者时,若没有感染者,则只需1次检测即可:若有1名感染者,则需次检测;若有2名感染者,且检测次数最多,则第2轮检测时,2名感染者不位于同一组,两个待检测组的样本数均为2m-1、,每组1名感染者,此时每组需次检测,则两组共需次检测,故有2名感染者,且检测次数最多,共需次检测.因为,所以,所以的最大值为.16.【解析】对椭圆,设,,的内切圆半径为,则,故,由题意知,,则,同理可得.又由内切圆的性质得,所以.由,得,即.当,时,.设,,则,所以的最大值为.四、解答题17.(1)证明:由题意得,因为,(3分)且,(4分)所以数列是首项为,公比为的等比数列.(5分)(2)解:由(1)得,即,所以.(8分)因为,所以.又随着的增大而增大,所以,故满足条件的最小正整数为.(10分)18.(1)证明:在中,由正弦定理得,则;在中,由正弦定理得,则,(4分)所以,(5分)所以. (6分)(2)解:由,得,.又,所以在和中,由余弦定理得.由,得,整理得. (9分)又,所以在中,由余弦定理得.联立得故.(12分)19.解:(1)第一场比赛,业余队安排乙与甲进行比赛,则业余队获胜的概率为;(2分)第一场比赛,业余队安排丙与甲进行比赛,则业余队获胜的概率为.(4分)当时,,(5分)即,所以第一场业余队应该安排乙与甲进行比赛.(6分)(2)由题意知X的可能取值为8或16.由(1)知第一场业余队应该安排乙与甲进行比赛,此时业余队获胜的概率专业队获胜的概率,所以非平局的概率(9分)平局的概率,所以.(11分)因为,所以,即的数学期望的取值范围是. (12分)20.(1)证明:由题意得平面.因为是切线与圆的切点,所以平面,且,则.
河北省衡水中学2022-2023学年高三下学期一调考试数学试题
2023-11-22
·
21页
·
1.2 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片