柳州市2023届高三第三次模拟考试理科数学参考答案

2023-11-22 · 6页 · 1.1 M

柳州市2023届高三第三次模拟考试理科数学参考答案一、选择题(本题共12小题,每小题5分,共60分.)题号123456789101112答案DDCCCCBACDAB二、填空题(本题共4小题,每小题5分,共20分.)1713.14.22115.46516.313三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.)17.解:(1)设质量指标值的平均数为,中位数为,则��x550.15650.25750.3850.2950.173.5....................................................3分0.4(a70)0.030.5,a73.3..............................................................................................6分(2)样本中质量指标在[50,60)的产品有40×10×0.015=6件,质量指标在[90,100]的有40×10×0.01=4件,可能的取值为0,1,2,..........................................................................................7分相应的概率为:C2624,8分P(0)2..............................................................................................................C104515C1C124846,9分P(1)2...........................................................................................................C104515C21516,10分P(2)2..............................................................................................................C10453随机变量的分布列为012281P15153................................................................................................................................................................11分2816期望E()012...........................................................................................12分151535118.解:(1)∵ABBC,BC1,AB3,由勾股定理得:ACAB2BC212(3)22,ACB........................................1分31△ACD中,由余弦定理:CD2AC2AD22ACADcos41622412......2分32∵AC2CD241216AD2,∴DCAC.............................................................................3分又因为PA底面ABCD,DC底面ABCD,所以PADC.................................................4分又因为ACPAA,∴DC平面PAC.........................................................................................5分DC底面PCD∴平面PDC平面PAC....................................................................................6分(2)作AHPC,垂直为H,连结DH..........................................................................................7分因为平面PDC平面PAC,且平面PDC平面PACPC所以AH平面PCD............................................................................................................................8分所以ADH为AD与平面PCD所成的角..........................................................................................9分PAAC424△PAC中,AH...........................................................................................10分PC255AH415sinADH.......................................................................................................11分DA545所以直线AD与平面PCD所成角的余弦值为............................................................................12分255另解:(1)因为AD∥BC,ABBC,所以ABAD,且PA底面ABCD,AB,AD底面ABCD,所以PAAB,PAAD,所以以AB,AD,AP方向分别为x,y,z轴建系如图,...........................1分则..A(0,0,0),B(3,0,0),C(3,1,0),D(0,4,0),P(0,0,4),................................................2分设平面PCD的一个法向量为m(x,y,z),CP(3,1,4),CD(3,3,0),AP(0,0,4),CPm3xy4z0所以,令,则,所以,4分x3y1,z1m(3,1,1)...........CDm3x3y0设平面PAC的一个法向量为n(a,b,c),CPn3ab4c0所以,令a1,则b3,c0,所以n(1,3,0),.......6分APn4c0所以mn330,所以平面PCD平面PAC................................................................7分2(2)因为PA底面ABCD,AD底面ABCD,所以PAAD,且ABAD,PAABA,PA,AB平面PAB,所以AD平面PAB,所以AD(0,4,0)为平面PAB的一个法向量,设直线与平面PCD所成角为,ADADm45所以sincosAD,m,...........................................................10分ADm545所以直线AD与平面PCD所成角的余弦值为...............................................................................12分25519.(1)由条件得:(2ac)cosBbcosC,由正弦定理,得(2sinAsinC)cosBsinBcosC,.........................................................................1分即2sinAcosBcosBsinCsinBcosC,所以2sinAcosBsin(BC),.....................................2分因为ABC,所以sin(BC)sinA,即2sinAcosBsinA,...........................................3分因为A为三角形内角,故sinA0,..................................................................................................4分1所以cosB,因为0B,所以B.....................................................................................6分231333(2)由(1)得S△acsinBac,解得ac6,...................................................7分ABC242212因为BMBAAMBABCBABABC,333221212442122所以|BM|BABCBABABCBCc2ac4a................................8分3399991112c24a22ac(24a2c22ac)(4ac2ac)ac4,............................................9分9993当且仅当c2a即a3,c23时,|BM|取得最小值2,此时sinC2sinA,....................10分223又因为CA,所以sinA2sinA,整理得tanA,........................................11分3332因为0A,所以A,所以C,所以ABC是直角三角形.....................................12分362π120.(1)gx2sinxxlnx10x,gx2cosx1,g00,1分6x11π1令ux2cosx10x,ux2sinx2,u01,....................2分x16x11π2令vx2sinx20x,vx2cosx30,.............................3分x16x13ππ所以vx在区间0,上单调递减,即ux在区间0,上单调递减.66π1πu10,u0u0

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐