高考数学专题09 解析几何专题(数学文化)(原卷版)

2023-11-15 · 14页 · 754.7 K

专题09解析几何专题(数学文化)一、单选题1.(2022·全国·高三专题练习)古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆雉,得到的截面是圆;把平面再渐渐倾斜得到的截面是椭圆.若用面积为128的矩形截某圆锥得到椭圆,且与矩形的四边相切.设椭圆在平面直角坐标系中的方程为,下列选项中满足题意的方程为(    )A. B. C. D.2.(2023·全国·高三专题练习)第24届冬季奥林匹克运动会,将于2022年2月在北京和张家口举行,北京冬奥会会徽以汉字“冬”为灵感来源,运用中国书法的艺术形态,将厚重的东方文化底蕴与国际化的现代风格融为一体,呈现出新时代的中国新形象、新梦想.会徽图形上半部分展现滑冰运动员的造型,下半部分表现滑雪运动员的英姿.中间舞动的线条流畅且充满韵律,代表举办地起伏的山峦、赛场、冰雪滑道和节日飘舞的丝带,下部为奥运五环,不仅象征五大洲的团结,而且强调所有参赛运动员应以公正、坦诚的运动员精神在比赛场上相见.其中奥运五环的大小和间距按以下比例(如图):若圆半径均为12,则相邻圆圆心水平距离为26,两排圆圆心垂直距离为11,设五个圆的圆心分别为,若双曲线C以为焦点、以直线为一条渐近线,则C的离心率为(    )A. B. C. D.3.(2022春·云南曲靖·高二校考开学考试)加斯帕尔·蒙日(如图甲)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图乙),则椭圆的蒙日圆的半径为(    )      A.3 B.4 C.5 D.64.(2022·全国·高三专题练习)我们把离心率为的椭圆称为“最美椭圆”.已知椭圆C为“最美椭圆”,且以椭圆C上一点P和椭圆两焦点为顶点的三角形的面积最大值为4,则椭圆C的方程为(    ).A. B.C. D.5.(2022秋·江苏南京·高二南京市第一中学校考阶段练习)德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点、是的边上的两个定点,是边上的一个动点,当在何处时,最大?问题的答案是:当且仅当的外接圆与边相切于点时,最大.人们称这一命题为米勒定理.已知点,的坐标分别是,,是轴正半轴上的一动点,当最大时,点的纵坐标为(    )A. B.2 C. D.46.(2022秋·新疆乌鲁木齐·高二乌市八中校考期中)德国天文学家开普勒发现天体运行轨道是椭圆,已知地球运行的轨道是一个椭圆,太阳在它的一个焦点上,若轨道近日点到太阳中心的距离和远日点到太阳中心的距离之比为,那么地球运行轨道所在椭圆的离心率是(    )A. B. C. D.7.(2022秋·福建·高二校联考期中)几何学史上有一个著名的米勒问题:“设点是锐角的一边上的两点,试在边上找一点,使得最大.”如图,其结论是:点为过,两点且和射线相切的圆与射线的切点.根据以上结论解决以下问题:在平面直角坐标系中,给定两点,点在轴上移动,当取最大值时,点的横坐标是(    )A.1 B. C.1或 D.1或8.(2022秋·北京·高二北大附中校考期末)公元前4世纪,古希腊数学家梅内克缪斯利用垂直于母线的平面去截顶角分别为锐角、钝角和直角的圆锥,发现了三种圆锥曲线.之后,数学家亚理士塔欧、欧几里得、阿波罗尼斯等都对圆锥曲线进行了深入的研究.直到3世纪末,帕普斯才在其《数学汇编》中首次证明:与定点和定直线的距离成定比的点的轨迹是圆锥曲线,定比小于、大于和等于1分别对应椭圆、双曲线和抛物线.已知是平面内两个定点,且|AB|=4,则下列关于轨迹的说法中错误的是(    )A.到两点距离相等的点的轨迹是直线B.到两点距离之比等于2的点的轨迹是圆C.到两点距离之和等于5的点的轨迹是椭圆D.到两点距离之差等于3的点的轨迹是双曲线9.(2021秋·辽宁沈阳·高三沈阳二十中校联考期中)古希腊数学家欧几里得在《几何原本》中描述了圆锥曲线的共性,并给出了圆锥曲线的统一定义,只可惜对这一定义欧几里得没有给出证明.经过了500年,到了3世纪,希腊数学家帕普斯在他的著作《数学汇篇》中,完善了欧几里得关于圆锥曲线的统一定义,并对这一定义进行了证明.他指出,到定点的距离与到定直线的距离的比是常数e的点的轨迹叫做圆锥曲线;当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线.现有方程表示的曲线是双曲线,则m的取值范围为(    )A. B. C. D.10.(2022·全国·高三专题练习)如图①,用一个平面去截圆锥得到的截口曲线是椭圆.许多人从纯几何的角度出发对这个问题进行过研究,其中比利时数学家Germinaldandelin()的方法非常巧妙,极具创造性.在圆锥内放两个大小不同的球,使得它们分别与圆锥的侧面、截面相切,两个球分别与截面相切于,在截口曲线上任取一点,过作圆锥的母线,分别与两个球相切于,由球和圆的几何性质,可以知道,,,于是.由的产生方法可知,它们之间的距离是定值,由椭圆定义可知,截口曲线是以为焦点的椭圆.如图②,一个半径为的球放在桌面上,桌面上方有一个点光源,则球在桌面上的投影是椭圆,已知是椭圆的长轴,垂直于桌面且与球相切,,则椭圆的焦距为(    )A. B. C. D.11.(2022·全国·高三专题练习)阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积.当我们垂直地缩小一个圆时,我们得到一个椭圆,椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积,已知椭圆的面积为,两个焦点分别为,点P为椭圆C的上顶点.直线与椭圆C交于A,B两点,若的斜率之积为,则椭圆C的长轴长为(    )A.3 B.6 C. D.12.(2022秋·北京·高二北京工业大学附属中学校考期中)著名数学家华罗庚曾说过:“数无形时少直觉,形少数时难入微.”事实上,有很多代数问题可以转化为几何问题加以解决,如:可以转化为平面上点与点的距离.结合上述观点,可得的最小值为(    )A. B. C. D.13.(2022秋·福建福州·高二福建省福州延安中学校考阶段练习)1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点.有人发现,第三颗小星的姿态与大星相近.为便于研究,如图,以大星的中心点为原点,建立直角坐标系,OO1,OO2,OO3,OO4分别是大星中心点与四颗小星中心点的连接线,α≈16°,则第三颗小星的一条边AB所在直线的倾斜角约为(    )A.0° B.1° C.2° D.3°14.(2022秋·湖北·高二宜城市第一中学校联考期中)在唐诗“白日登山望烽火,黄昏饮马傍交河”中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即认为回到军营,则“将军饮马”的最短总路程为(    )A. B. C. D.15.(2022秋·安徽合肥·高二合肥市第七中学校联考期中)国家体育场“鸟巢”的钢结构鸟瞰图如图1所示,内外两圈的钢骨架是离心率相同的椭圆;某校体育馆的钢结构与“鸟巢”相同,其平面图如图2所示,若由外层椭圆长轴一端点A和短轴一端点B分别向内层椭圆引切线AC,BD,且两切线斜率之积等于,则椭圆的离心率为(    )A. B. C. D.二、多选题16.(2020秋·重庆巴南·高二重庆市实验中学校考阶段练习)2020年11月24日,我国在中国文昌航天发射场,用长征五号遥五运载火箭成功发射探月工程嫦娥五号探测器,它将首次带月壤返回地球,我们离月球的“距离”又近一步了.已知点,直线,若某直线上存在点,使得点到点的距离比到直线的距离小1,则称该直线为“最远距离直线”,则下列结论正确的是(    )A.点的轨迹曲线是一条线段B.不是“最远距离直线”C.是“最远距离直线”D.点的轨迹与直线:是没有交会的轨迹即两个轨迹没有交点17.(2022·广东·统考模拟预测)数学家华罗庚曾说:“数缺形时少直观,形少数时难入微.”事实上,很多代数问题可以转化为几何问题加以解决.例如,与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点,对于函数,下列结论正确的是(    )A.无解 B.的解为C.的最小值为2 D.的最大值为218.(2022秋·广东茂名·高二统考期末)(多选)如图所示,“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P变轨进入以月球球心F为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P点第二次变轨进入仍以F为一个焦点的椭圆轨道Ⅱ绕月飞行.若用2c1和2c2分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用2a1和2a2分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,下列式子正确的是(   )A. B.C.< D.19.(2022·全国·高三专题练习)数学家称为黄金比,记为ω.定义:若椭圆的短轴与长轴之比为黄金比ω,则称该椭圆为“黄金椭圆”.以椭圆中心为圆心,半焦距长为半径的圆称为焦点圆.若黄金椭圆”:与它的焦点圆在第一象限的交点为Q,则下列结论正确的有(    )A. B.黄金椭圆离心率C.设直线OQ的倾斜角为θ,则 D.交点Q坐标为(b,ωb)20.(2022·全国·高二假期作业)1765年,数学家欧拉在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,这条直线就是后人所说的“欧拉线”.已知的顶点,重心,则下列说法正确的是(    )A.点的坐标为B.为等边三角形C.欧拉线方程为D.外接圆的方程为21.(2023秋·江苏南京·高二校考期末)古希腊著名数学家阿波罗尼斯发现:平面内到两个定点,的距离之比为定值的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系中,已知,,动点满足,记点的轨迹为圆,又已知动圆:.则下列说法正确的是(    )A.圆的方程是B.当变化时,动点的轨迹方程为C.当时,过直线上一点引圆的两条切线,切点为,,则的最大值为D.存在使得圆与圆内切22.(2022秋·江苏无锡·高二江苏省天一中学校考期末)双纽线最早于1694年被瑞士数学家雅各布﹒伯努利用来描述他所发现的曲线.在平面直角坐标系中,把到定点,距离之积等于的点的轨迹称为双纽线.已知点是双纽线上一点,下列说法中正确的有(    )A.双纽线关于轴对称 B.C.双纽线上满足的点有两个 D.的最大值为三、填空题23.(2022秋·内蒙古赤峰·高二校考期末)油纸伞是中国传统工艺品,至今已有1000多年的历史.为宣传和推广这一传统工艺,某活动中将一把油纸伞撑开后摆放在户外展览场地上,如图所示.该伞沿是一个半径为2的圆,圆心到伞柄底端距离为,当阳光与地面夹角为时,在地面形成了一个椭圆形影子,且伞柄底端正好位于该椭圆的长轴上,该椭圆的离心率_____________.24.(2022秋·河南·高二校联考期末)台球赛的一种得分战术手段叫做“斯诺克”:在白色本球与目标球之间,设置障碍,使得本球不能直接击打目标球.如图,某场比赛中,某选手被对手做成了一个“斯诺克”,本球需经过边,两次反弹后击打目标球N,点M到的距离分别为,点N到的距离分别为,将M,N看成质点,本球在M点处,若击打成功,则___________.25.(2022秋·云南·高三校联考阶段练习)大约在2000多年前,我国的墨子给出了圆的概念“一中同长也”,意思是说,圆有一个圆心,圆心到圆周的长都相等.这个定义比希腊数学家欧几里得给圆下定义要早100多年.已知直角坐标平面内有一点和一动点满足,若过点的直线将动点的轨迹分成两段弧,当劣弧所对的圆心角最小时,直线的斜率__________.26.(2022秋·湖南·高二校联考期中)古希腊数学家阿基米德早在2200多年前利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积,已知椭圆,则该椭圆的面积为________.27.(2022·广东韶关·统考一模)

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐