2023-2024学年度(上)阶段性考试(一)高2021级数学(理科)一、选择题(每个小题都有4个选项,其中只有1个正确选项,请把正确选项直接填涂在答题卡相应位置上.每小题5分,共60分.)1.某同学计划2023年高考结束后,在A,B,C,D,E五所大学中随机选两所去参观,则大学恰好被选中的概率为()A. B. C. D.2.设集合,集合,,则()A. B.C. D.3.已知复数(x,)对应的点在第一象限,z的实部和虚部分别是双曲线C的实轴长和虚轴长,若,则双曲线C的焦距为()A.8 B.4 C. D.24.展开式中的系数为()A. B. C. D.5.函数图像大致为()A. B.C. D.6.将六位数“”重新排列后得到不同的六位偶数的个数为()A. B. C.216 D.7.设,则()A. B. C. D.8.执行如图所示的程序框图,若输入的,则()A.输出的S的最小值为,最大值为5 B.输出的S的最小值为,最大值为4C.输出的S的最小值为0,最大值为5 D.输出的S的最小值为0,最大值为49.某四面体的三视图如图所示(3个三角形都是直角边为1的等腰直角三角形),该四面体的外接球的表面积为()A B. C. D.10.2021年是巩固脱贫攻坚成果的重要一年,某县为响应国家政策,选派了6名工作人员到A、B、C三个村调研脱贫后的产业规划,每个村至少去1人,不同的安排方式共有()种.A.540 B.480 C.360 D.24011.设是定义在上的偶函数,且当时,,若对任意的,不等式恒成立,则正数的取值范围为()A. B. C. D.12.如图,一个棱长1分米的正方体形封闭容器中盛有V升的水,若将该容器任意放置均不能使水平面呈三角形,则V的取值范围是()A. B. C. D.二、填空题(请把每个小题的答案直接填写在答题卡相应位置上,每小题5分,共20分.)13.已知随机变量,若,则___________.14已知向量,.若向量与垂直,则________.15.已知双曲线的左、右焦点分别为,过作一条直线与双曲线右支交于两点,坐标原点为,若,则该双曲线的离心率为___________.16.若函数在上单减,则实数的取值范围为______.三、解答题(解答须写出必要的文字说明,推理过程和演算步骤)17.为了有针对性地提高学生体育锻炼的积极性,某校需要了解学生是否经常锻炼与性别因素有关,为此随机对该校100名学生进行问卷调查,得到如下列联表.经常锻炼不经常锻炼总计男35女25总计100已知从这100名学生中任选1人,经常锻炼的学生被选中的概率为.附:.0.10.050.010.0012.7063.841663510.828(1)完成上面的列联表;(2)根据列联表中的数据,判断能否有90%的把握认为该校学生是否经常锻炼与性别因素有关.18.为了不断提高教育教学能力,某地区教育局利用假期在某学习平台组织全区教职工进行网络学习.第一学习阶段结束后,为了解学习情况,负责人从平台数据库中随机抽取了300名教职工的学习时间(满时长15小时),将其分成六组,并绘制成如图所示的频率分布直方图(同一组中的数据用该组区间的中点值为代表).参考数据:若随机变量服从正态分布,则,,.(1)求a的值;(2)以样本估计总体,该地区教职工学习时间近似服从正态分布,其中近似为样本的平均数,经计算知.若该地区有5000名教职工,试估计该地区教职工中学习时间在内的人数;(3)现采用分层抽样的方法从样本中学习时间在内的教职工中随机抽取5人,并从中随机抽取3人作进一步分析,分别求这3人中学习时间在内的教职工平均人数.(四舍五入取整数)19.如图,在圆锥中,为圆锥顶点,为圆锥底面的直径,为底面圆的圆心,为底面圆周上一点,四边形为矩形,且,.(1)若为的中点,求证:平面;(2)若与平面所成角为,求二面角的余弦值.20.已知拋物线的顶点在原点,对称轴为轴,且经过点.(1)求抛物线方程;(2)若直线与抛物线交于两点,且满足,求证:直线恒过定点,并求出定点坐标.21.已知函数.(1)当时,试讨论函数的单调性;(2)设函数有两个极值点,证明:.22.在平面直角坐标系中,曲线参数方程为(1)求曲线的直角坐标方程;(2)已知点,直线的参数方程为(为参数,),且直线与曲线交于A、两点,求的值.
精品解析:四川省成都列五中学2023-2024学年高三上学期10月月考理数试题(原卷版)
2023-11-25
·
5页
·
736 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片