武汉市2024届九所重点中学第一次联考数学参考答案与评分标准选择题:题号123456789101112答案ADCDBCCABCDACABDAD填空题:xy22413.(答案不唯一)+=114.233n33444215.或16.;n+422793解答题:17.(10分)解:(1)设数列{}an的公差为d,于是aandndn=+−=−−2(2)(2)1,因为SS95=5,所以925aa53=,所以9(31)25(1)dd−=−,解得d=−8,则ann=−158;··························································································3分22naa()1+nSnnnaa()1+nnaa1+n2n(2)a1=7,Sn=,考虑,即,即,2ankn+2ankn+ann+k由于d0,则n3时,aan20,且aann+=−12280,an44n−结合上述不等式得knn−2,整理得kn,································7分aa1+n411n−44n−任取整数nk,则nnk,原不等式成立,411n−2Snn于是对于任意正数k,均存在n(,3)nn+使得成立.························10分ankn+18.(12分)解:2(1)fx()的导函数fxxx'()366=−−,令fx'()0=得x1=−13,x2=+13,列表如下:x(,13)−−13−(1−+3,13)13+(13,)++fx'()+0−0+↑极大值↓极小值↑32所以有一个极大值为fx(1)=(1−3)−3(1−3)−6(1−3)+9=1+63,32一个极小值为fx(2)=(1+3)−3(1+3)−6(1+3)+9=1−63.············4分232(2)切线l的方程为y−f(x0)=f'(x0)(x−x0),整理得y=(3x0−6x0−6)x−2x0+3x0+9,32232设gxfxyx()()=−=−3(36)23x−x0−xxx0+0−x0,且易知gx(0)=0,{#{QQABaQSQogAoABAAAAgCAwnQCEOQkAECCIoOhBAEoAAAQQFABAA=}#}232则gxxxxmxn()()()=−++0,从而gxxmxxnmxxnx()()()=+−+−−000,mx−=−3mx=−3于是0,解得0,322−=−nxxx00023nx=x−+2300222于是g()()[(3)23]()xxxxxxxxxxxx=−+−−+=−+−000000(23),由题意可知,方程gx()0=有另一解x110x()x,于是xx10=−32,所以|||33xxx010−=−=|6,解得x0=3或x0=−1,·············································10分时,l的斜率kfx=='()30,时,l的斜率;综上,切线l的斜率为3.···········································································12分19.(12分)解:cb(1)在ABC中,由正弦定理得==2b,则2bsinC=c,sinsinCB又2bcoAsCD=c,且bc0,所以sincosCACD=,考虑到sin0C,则ACD是锐角,若C为钝角,则CA−CD=,即=DCB,2255此时有C,又A0,则CAB=−−,则C(,);·························4分2626若C为锐角,则CACD+=,由题意知DCB0,则CACD,2所以CACDC+=2,又ACD0,所以C,所以C(,),22425综上所述,C(,)(,).···································································6分4226(2)由题知BDc,若C为钝角,则DBC中,BDCDc==22,不合题意,故C为锐角,也即,································································7分ACCDADc222+−ACD中,由余弦定理得cos==ACD,22ACCDb解得ADb22=,因为AD0,所以AD=b,···················································9分结合正弦定理知=ACDADC,于是AACD=−2,又,则ACC=−−=2()2,235又ABC++=,将上式代入,得A+=,解得A=.···························12分26920.(12分)解:16yy−()设关于的回归方程为ˆˆˆ,时,,61,1zyz=+abyi=2,3,4,5,6yy==i4.7z==1.625i=25n(z−−z)(yy)ii11.33则i=1,ˆ,b=n=0.34a=z−by=0.02233.7()zzi−i=1{#{QQABaQSQogAoABAAAAgCAwnQCEOQkAECCIoOhBAEoAAAQQFABAA=}#}于是z关于y的回归方程为zyˆ=+0.020.34.····················································6分(2)选择②,理由如下:由(1)问知z和y有线性关系,故用zˆ估计z,知yyyiii−=+−10.020.34,则0.66yyii=+0.02−1,于是0.66(yyii+0.06)=0.06+−1,1即{0.06y+}是首项为y+=0.061.06,公比为q=的等比数列,i10.661−i(ln−0.66)xi从而yi=−=−1.06(0.66)0.060.7e0.06,满足②式的形式,故②适宜作为y与x的回归方程类型.···························································12分21.(12分)(1)证明:记ABC和A1B11C的中心分别为点OO,1,当AA11OO时,记点A1B1,,1C所在位置分别为点A000B,,C,易知ABCA−BC000为正三棱柱,且点23ABCABC,,,,,均在以O为圆心的圆上,O的半径为AO=;11100011013因为=AOBAOB010111,所以=AOABOB011011,同理可得=A011011011=OABOBCOC,记=AOA011(0),则在中,AABBCC010101==,由上知OO1⊥,于是AABBCCOO0001====4,且AAAA001⊥,BBBB001⊥,CCCC001⊥,则AABBCC111==,··························3分下面只需证明AABBBBCCCCAA111111==,因为AA1100=++=+=+BBAAA1001000()()16A10BBB1010BAA1BBAABBAABB,同理有BBCCB110101=+BC16C,CCAAC110101=+CA16A,而AABBBBCCBBAACCBBACAC0101−0101=01()()01−01=0100−11=+++B0100001111BA()BBCABBC在中,由于BCAB0011=,所以AB10和BC10所对弧长相等,即=A110100BBBBC,所以=A0B10101BBBC,则B0BB10=AB0101BB1C,B0BB10=CB0101BB1A,也即AABBBBCC0101−0101=0,则AABBBBCC01=010101,同理有BBCCCCAA01=010101,AABBBBCCCCAA所以,所以11==1111,|AA1||BB1||BB1||CC1||CC1||AA1|即AA1,BB1,CC1两两夹角相等.······································································6分{#{QQABaQSQogAoABAAAAgCAwnQCEOQkAECCIoOhBAEoAAAQQFABAA=}#}(2)解:记直线CA11和CA00的交点为P,连接PA,PC,设A1和C1到平面ACC00A的距离分别为d1,d2,作C100GA⊥C于G,A100HA⊥C于H,由(1)问知AA0⊥,CC0⊥,则CC01⊥CG,AA01⊥AH,于是AH1⊥平面ACC00A,CG1⊥平面,1从而AHd=,CGd=,又APC的面积SACAA==4,1112202若P在线段AC上(如上图),则0,因为==CAOCAO,0030011116所以==APAAOA01011,于是d11C=Psin,dA21P=sin,1148则VVVSdSd=+=+=+=sin()sinCPPA,ACC1111AACPAACCP331233112若P在线段的延长线上(如下图),则,因为,3所以+=PAOA110,所以P=−,于是dCPCP111=−=sin()sin,,1148则VVVSdSdPAC=−=−=−=Psin()sin,ACC1AACPAACC111P33331211综上,当sin1=时,四面体ACCA的体积取最大值,此时=,·····················9分11226242则AOAO⊥,则AAA==O2,AABBCCAAA===+=A22,0111010131110013由(1)问知,AA110=+=+++BBA1010A161611B10BA()11OO()1ABOOB23222444=++−++=−=16()[2coscos()2cos()]16,33333344AABB11设AA和BB的夹角为,则cos===113.······························12分1156||||AABB1114322.(12分)解:5232259(1)将P(,)代入双曲线C得:−=1,2222ab22b双曲线的渐近线为yx=,即bxay=0;取l:0bx+=ay,l:0bx−=ay,a34|5ba+3||5ba−3|则点P到l3的距离d1=,点P到l4的距离d2=,2(ab22+)2(ab22+)因为a0且b0,所以|5b+3a||5b−3a|,所以dd12,于是dd12=4,即|5b+3a|=4|5b−3a|,259又−=10,所以53ba,所以534(53baba+=−),解得ba=,22ab222592598xy22所以−=−==1,则a2=8,则C:1−=.························4分2a22b22a22a2a288{#{QQABaQSQogAoABAAAAgCAwnQCEOQkAECCIoOhBAEoAAAQQFABAA=}#}(2)i.设l11yk:xm=+,lykxnmn21:()=+,Qx(,y)11,3252k将点P代入直线l得:=+1m,即23mk5=−,1221222联立直线和双曲线的方程,消去y得:(1)280kxkmxm11−+++=,2km1则xxPQ+=−2,(式①)·······································································5分k1−1nnn因为点A在第一象限,故联立直线yx=与l2解得x=−,则A(,)−−,k1−1kk11−−11
武汉市2024届九所重点中学第一次联考数学试题参考答案
2023-11-17
·
5页
·
434 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片