怀仁一中高三年级2023~2024学年上学期第一次月考数学全卷满分150分,考试时间120分钟。注意事项:1.答题前,先将自己的姓名、准考证填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置。2.请按题顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效。3.选择题用2B铅笔在答题卡上把所选答案的标涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚。4.考试结束后,请将试卷和答题卡一并上交。5.本卷主要考查内容:高考范围。一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知i为虚数单位,则复数的虚部为()A. B. C. D.2.下列向量关系式中,正确的是()A. B. C. D.3.设等差数列的前n项和为,且,,则()A. B.10 C.11 D.4.若,则函数有()A.最小值 B.最大值 C.最小值 D.最大值5.二项式的展开式中的常数项为()A.1792 B.-1792 C.1120 D.-11206.某人家的抽屉里有4双不同花色的袜子,从中随机任取3只,则这3只袜子中恰有2只花色相同的概率为()A. B. C. D.7.已知函数,若在内的两个根为,,则()A. B. C. D.8.函数的定义域为M,若存在正实数m,对任意的,都有,则称函数具有性质.已知函数具有性质,则k的最小值为()A.2 B.1 C. D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列函数中,在上单调递增,且其图象存在对称轴的有()A. B.C. D.10.已知函数,则下列选项正确的是()A.函数在处取得极小值0B.C.若函数在上恒成立,则D.函数有三个零点11.在长方体中,已知,,则下列结论正确的有()A. B.异面直线与所成的角为90°C.二面角的余弦值为 D.四面体的体积为12.已知,是抛物线上异于坐标原点O的两个动点,且以AB为直径的圆过点O,过点O作于点M,则()A.直线AB的斜率为 B.直线AB过定点C.点M的轨迹方程为 D.的重心G的轨迹为抛物线三、填空题:本题共4小题,每小题5分,共20分.13.已知全集,集合,,则______.14.为了建设社会主义新农村,近年来某城关镇积极招商引资,加快经济建设,使居民收人得到了较大的提高.已知该城关镇2016年至2020年(用,2,3,4,5表示年份)的居民人均收人y(万元)的数据如下表:x12345y1215192430由此得到y关于x的经验回归方程为,则可以预测2021年该城关镇居民人均收人为______万元.15.已知双曲线的左、右焦点分别为,,过点的直线与双曲线的右支相交于A,B两点,,且的周长为10,则双曲线C的焦距为______.16.在三棱锥中,已知侧棱底面ABC,,且,在此三棱锥内放一个球,当球的体积最大时,球的半径为______.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.(本小题满分10分)已知的内角A,B,C的对边分别为a,b,c,且.(1)求C;(2)若,,如图,D为线段AB上一点,且.求CD的长.18.(本小題满分12分)已知正项等比数列的前n项和为,,.(1)求数列的通项公式;(2)令,记数列的前n项和为,求的最大值.19.(本小题满分12分)如图,在四校锥中,底面ABCD为正方形,底面ABCD,,,点M在棱PC上,且,.(1)证明:平面PAB;(2)求DM与平面BEF所成角的正弦值.20.(本小题满分12分)为庆祝六一国际儿童节,某单位组织本单位职工的小孩举行游艺活动.其中有个“套圈游戏”,游戏规则为:每个小孩有三次套圈机会,其中前两次每套中一次得1分,第三次套中得2分,没有套中得0分.套完三次后,根据总分确定获奖等第:总分为0分获三等奖,总分为1分或2分获二等奖,总分为3分或4分获一等奖.假设欢欢和乐乐两个小朋友每次套圈套中的概率分别为和,且每次套圈互不影响,(1)求欢欢和乐乐两个小朋友都获得一等奖或二等奖的概率;(2)试从平均得分的角度,分析欢欢和乐乐两位小朋友各自得哪个奖项的可能性较大?21.(本小题满分12分)已知函数,其中.(1)讨论函数的单调性;(2)当时,若关于x的不等式恒成立,求实数a的取值范围.22.(本小题满分12分)在平面直角坐标系xOy中,已知椭圆的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)已知点A,B分别为椭圆C的左、右顶点,点D为椭圆C的下顶点,点P为椭圆C上异于椭圆顶点的动点,直线AP与直线BD相交于点M,直线BP与直线AD相交于点N.证明:直线MN与x轴垂直.怀仁一中高三年级2023~2024学年上学期第一次月考·数学参考答案、提示及评分细则1.B因为,所以z的虚部为.故选:B.2.D由向量的概念及线性运算,可知D正确.故选:D.3.C由,得,所以,又,,所以.故选:C.4.B因为,所以,当且仅当时取等.故选:B.5.C因为,令,得,所以二项式展开式中的常数项为.故选:C6.A从4双不同花色的袜子中,随机任取3只,共有(种)不同的选取方法,其中恰有2只花色相同有(种)不同的选取方法,所以概率为.故选:A.7.D由,得,所以的图象关于对称,故,即,所以,因为,所以,又,所以,故.故选:D.8.C因为,而,所以,故,即,所以k的最小值为,故选:C.9.AC的图象关于对称,且在上单调递增,所以A满足条件;只有对称中心,没有对称轴,所以B不满足条件;的图象关于对称,且在上单调递增,所以C满足条件;的图象关于对称,但在上单调涕减,所以D不满足条件.故选:AC.10.ABDA.,,单调递减;,,单调递增,A正确;B.在上单调递减,,B正确;C.在上的最大值为,则,C错误;D.由的简图可知的图象与有三个交点,D正确.11.ACD由已知,可以证明平面,所以A正确;因为,所以与不垂直,故与不垂直,所以B不正确;设AC与BD交于O,则为二面角的平面角,在中,,,所以,所以,故C正确;四面体的体积为,所以D正确.故选:ACD.12.ABD因为,,两式相减,得,所以,所以A正确;因为以AB为直径的圆过原点O,所以,即,所以,又,所以,故,,因为直线AB的斜率存在,设直线AB的方程为,由,消去y,得,所以,故,即,所以直线AB的方程为,所以直线AB过定点,所以B正确;因为于,直线过定点,所以点的轨迹是以为直径圆(除去原点),其方程为,所以C不正确;设的重心为,则,,由方程(*)可知,,,所以,消去k得,因为,所以的重心G的轨迹为抛物线,所以D正确.故选:ABD.13.因为,,所以.故答案为:.14.35.6因为,,所以,解得,所以当时,,故可以预测2021年该城关镇居民人均收入为35.6万元.故答案为:35.6.15.设,,,可得,有,解得,在和中,由余弦定理有,解得,可得双曲线的焦距为.16.当球的体积最大时,球为三棱锥的内切球,设内切球的半径为r,三棱锥的表面积为S,则,由已知,可以证明平面PAB.所以,又,所以,解得.故答案为:.17.解:(1)根据正弦定理得,整理得,因为,所以,又,可得.(2)在中,由余弦定理得:,将(1)中所求代入整理得:,解得或(舍),即,在中,可知,有,所以.18.解:(1)设数列的公比为,由,有①又由,有,得②①÷②有,解得或(舍去)由,可求得,有故数列的通项公式为(2)若,可得,可得当且时;当且时,故最大,又由,可得,故的最大值为64.19.(1)证明:如图所示:取PA靠近P的三等分点G,连接FG,BG,因为F,G分别是PD,PA三等分点,则且,又易知E为BC的三等分点,故且,故BEFG是平行四边形,故,∵平面PAB,平面PAB,∴平面PAB;(2)解:如图,分别以,,为x,y,z轴建立空间直角坐标系,则,,,,,,设,,∴,得,又∵,即,解得,,又,,设平面BEF一个法向量为,则,即,令,则,设DM与平面PEF所成角为,∴.20.解:(1)因为“欢欢和乐乐两个小朋友都获得一等奖或二等奖”的对立事件为“欢欢和乐乐两个小朋友都获得三等奖”,设欢欢和乐乐两个小朋友最后得分分别为X和Y,则,所以欢欢小朋友获得三等奖的概率为;,所以乐乐小朋友获得三等奖的概率为;故欢欢和乐乐两个小朋友都获得一等奖或二等奖的概率为;(2)因为,1,2,3,4,且,,,,,所以欢欢小朋友最后得分X的分布列为X01234P所以,所以欢欢小朋友最后得分X的平均值为;因为,1,2,3,4,且,,,,,所以乐乐小朋友最后得分Y的分布列为X01234P所以,所以欢欢小朋友最后得分Y的平均值为,所以欢欢小朋友得一等奖的可能性较大,乐乐小朋友得二等奖的可能性较大.21.解:(1)由,①当时,,可得此时函数单调递增,②当时,令可得或,则此时函数的减区间为,增区间为,,③当时,令可得或,则此时函数的减区间为,增区间为,;(2)①当时,由,满足題意;②当时,由,;若时,,可得,再由(1)中函数的单调性可知,满足题意;③当时,令,二次函数的对称轴为,由,,根据二次函数的单调性可知,若,有,可得当时,.若关于x的不等式恒成立,由(1)中函数的单调性可知只需,可得,由上知,若关于x的不等式恒成立,则实数a的取值范围为.22.解:(1)设椭圆C的焦距为,由题意有:解得,,,故椭圆C的标准方程为.(2)证明:由(1)知,点A的坐标为,点B的坐标为,点D的坐标为,设点P的坐标为(其中,),有,可得,直线BD的方程为,整理为,直线AD的方程为,整理为,直线AP的方程为联立方程,解得:,故点M的横坐标为直线BP的方程为联立方程,解得:,故点N的横坐标为又由故点M和点N的横坐标相等,可得直线MN与x轴垂直.
山西省朔州市怀仁市第一中学校2024届高三上学期第一次月考数学试题
2023-11-17
·
11页
·
678.8 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片