八年级数学《分式》练习题 一.选择题(共10小题)1.(2013•淄博)下列运算错误的是( ) A.B. C.D. 2.(2013•重庆)分式方程﹣=0的根是( ) A.x=1B.x=﹣1C.x=2D.x=﹣2 3.(2013•漳州)若分式有意义,则x的取值范围是( ) A.x≠3B.x≠﹣3C.x>3D.x>﹣3 4.(2013•湛江)计算的结果是( ) A.0B.1C.﹣1D.x 5.(2013•枣庄)下列计算正确的是( ) A.﹣|﹣3|=﹣3B.30=0C.3﹣1=﹣3D.=±3 6.(2013•岳阳)关于x的分式方程+3=有增根,则增根为( ) A.x=1B.x=﹣1C.x=3D.x=﹣3 7.(2013•厦门)方程的解是( ) A.3B.2C.1D.0 8.(2013•乌鲁木齐)下列运算正确的是( ) A.a4+a2=a6B.5a﹣3a=2C.2a3•3a2=6a6D.(﹣2a)﹣2= 9.(2013•温州)若分式的值为0,则x的值是( ) A.x=3B.x=0C.x=﹣3D.x=﹣4 10.(2013•威海)下列各式化简结果为无理数的是( ) A.B.C.D. 二.填空题(共10小题)11.(2013•遵义)计算:20130﹣2﹣1= _________ . 12.(2013•株洲)计算:= _________ . 13.(2013•宜宾)分式方程的解为 _________ . 14.(2013•盐城)使分式的值为零的条件是x= _________ .15.(2013•新疆)化简= _________ . 16.(2013•潍坊)方程的根是 _________ . 17.(2013•天水)已知分式的值为零,那么x的值是 _________ . 18.(2013•常州)函数y=中自变量x的取值范围是 _________ ;若分式的值为0,则x= _________ . 19.(2012•黔南州)若分式的值为零,则x的值为 _________ . 20.(2013•南京)使式子1+有意义的x的取值范围是 _________ . 三.解答题(共8小题)21.(2013•自贡)先化简,然后从1、、﹣1中选取一个你认为合适的数作为a的值代入求值. 22.(2013•重庆)先化简,再求值:,其中x是不等式3x+7>1的负整数解. 23.(2013•张家界)先简化,再求值:,其中x=. 24.(2013•烟台)先化简,再求值:,其中x满足x2+x﹣2=0. 25.(2013•威海)先化简,再求值:,其中x=﹣1. 26.(2013•汕头)从三个代数式:①a2﹣2ab+b2,②3a﹣3b,③a2﹣b2中任意选两个代数式构造分式,然后进行化简,并求出当a=6,b=3时该分式的值. 27.(2013•宁德)(1)计算:•﹣b(2)解不等式组,并把它的解集表示在数轴上;. 28.(2013•鄂尔多斯)(1)计算:﹣22++(3﹣π)0﹣|﹣3|(2)先化简()÷(1﹣),然后从﹣<x<范围内选取一个合适的整数作为x的值代入求值. 八年级数学《分式》练习题参考答案与试题解析 一.选择题(共10小题)1.(2013•淄博)下列运算错误的是( ) A.B. C.D.考点:分式的基本性质.4387773分析:根据分式的基本性质作答,分子分母同时扩大或缩小相同的倍数,分式的值不变,即可得出答案.解答:解:A、==1,故本选项正确;B、==﹣1,故本选项正确;C、=,故本选项正确;D、=﹣,故本选项错误;故选D.点评:此题考查了分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0. 2.(2013•重庆)分式方程﹣=0的根是( ) A.x=1B.x=﹣1C.x=2D.x=﹣2考点:解分式方程.4387773专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x﹣x+2=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故选D点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 3.(2013•漳州)若分式有意义,则x的取值范围是( ) A.x≠3B.x≠﹣3C.x>3D.x>﹣3考点:分式有意义的条件.4387773分析:分式有意义时,分母不等于零.解答:解:当分母x﹣3≠0,即x≠3时,分式有意义.故选A.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 4.(2013•湛江)计算的结果是( ) A.0B.1C.﹣1D.x考点:分式的加减法.4387773专题:计算题.分析:原式利用同分母分式的减法法则计算,变形后约分即可得到结果.解答:解:原式==﹣=﹣1.故选C点评:此题考查了分式的加减法,分式的加减运算关键是通分,通分的关键是找最简公分母. 5.(2013•枣庄)下列计算正确的是( ) A.﹣|﹣3|=﹣3B.30=0C.3﹣1=﹣3D.=±3考点:负整数指数幂;绝对值;算术平方根;零指数幂.4387773分析:A、根据绝对值的定义计算即可;B、任何不等于0的数的0次幂都等于1;C、根据负整数指数幂的法则计算;D、根据算术平方根计算.再比较结果即可.解答:解:A、﹣|﹣3|=﹣3,此选项正确;B、30=1,此选项错误;C、3﹣1=,此选项错误;D、=3,此选项错误.故选A.点评:本题考查了绝对值、零指数幂、算术平方根、负整数指数幂,解题的关键是掌握这些运算的运算法则. 6.(2013•岳阳)关于x的分式方程+3=有增根,则增根为( ) A.x=1B.x=﹣1C.x=3D.x=﹣3考点:分式方程的增根.4387773分析:增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣1)=0,得到x=1,然后代入化为整式方程的方程,检验是否符合题意.解答:解:方程两边都乘(x﹣1),得7+3(x﹣1)=m,∵原方程有增根,∴最简公分母x﹣1=0,解得x=1,当x=1时,m=7,这是可能的,符合题意.故选A.点评:本题考查了分式方程的增根,关于增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程,检验是否符合题意. 7.(2013•厦门)方程的解是( ) A.3B.2C.1D.0考点:解分式方程.4387773专题:计算题;压轴题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 8.(2013•乌鲁木齐)下列运算正确的是( ) A.a4+a2=a6B.5a﹣3a=2C.2a3•3a2=6a6D.(﹣2a)﹣2=考点:单项式乘单项式;合并同类项;负整数指数幂.4387773分析:根据单项式乘单项式、合并同类项、负整数指数幂的运算法则,分别进行计算,即可得出答案.解答:解:A、a4+a2不能合并,故本选项错误;B、5a﹣3a=2a,故本选项错误;C、2a3•3a2=6a5,故本选项错误;D、(﹣2a)﹣2=故本选项正确;故选D.点评:此题考查了单项式乘单项式、合并同类项、负整数指数幂,解题的关键是熟练掌握运算法则,注意指数的变化情况. 9.(2013•温州)若分式的值为0,则x的值是( ) A.x=3B.x=0C.x=﹣3D.x=﹣4考点:分式的值为零的条件.4387773分析:根据分式值为零的条件可得x﹣3=0,且x+4≠0,再解即可.解答:解:由题意得:x﹣3=0,且x+4≠0,解得:x=3,故选:A.点评:此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少. 10.(2013•威海)下列各式化简结果为无理数的是( ) A.B.C.D.考点:立方根;算术平方根;零指数幂.4387773分析:先将各选项化简,然后再判断.解答:解:A、=﹣3,是有理数,故本选项错误;B、(﹣1)0=1,是有理数,故本选项错误;C、=2,是无理数,故本选项正确;D、=2,是有理数,故本选项错误;故选C.点评:本题考查了无理数、立方根及零指数幂的知识,属于基础题. 二.填空题(共10小题)11.(2013•遵义)计算:20130﹣2﹣1= .考点:负整数指数幂;零指数幂.4387773分析:根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.解答:解:20130﹣2﹣1,=1﹣,=.故答案为:.点评:本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键. 12.(2013•株洲)计算:= 2 .考点:分式的加减法.4387773分析:分母不变,直接把分子相加即可.解答:解:原式===2.故答案为:2.点评:本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减. 13.(2013•宜宾)分式方程的解为 x=1 .考点:解分式方程.4387773专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:2x+1=3x,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 14.(2013•盐城)使分式的值为零的条件是x= ﹣1 .考点:分式的值为零的条件.4387773分析:分式的值为零时,分子等于零,且分母不等于零.解答:解:由题意,得x+1=0,解得,x=﹣1.经检验,x=﹣1时,=0.故答案是:﹣1.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 15.(2013•新疆)化简= .考点:分式的乘除法.4387773分析:原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分即可得到结果.解答:解:原式=•=.故答案为:点评:此题考查了分式的乘除法,分式的乘除法运算的关键是约分,约分的关键是找公因式. 16.(2013•潍坊)方程的根是 x=0 .考点:解分式方程.4387773专题:计算题.分析:方程两边都乘以(x+1)把分式方程化为整式方程,然后再进行检验.解答:解:方程两边都乘以(x+1)得,x2+x=0,解得x1=0,x2=﹣1,检验:当x=0时,x+1=0+1=1≠0,当x=﹣1时,x+1=1﹣
【人教版】数学八年级上第15章 分式 复习题及答案解析
2023-12-20
·
13页
·
398.5 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片