202309高三入学摸底考试答案(数学)

2023-11-18 · 7页 · 354.6 K

新时代NT教育2023-2024学年高三入学摸底考试数学(新高考)参考答案1.D【解析】当A时,a=0,当A2时,a1,当A2时,a=1,a1,0,1.22.B【解析】z1i,zi.1ix2y23.B【解析】当(k2)(k2)0,即k2或k2时,1表示双曲线,k2k2x2y2所以“k2”是“1表示双曲线”的充分不必要条件.k2k21114.D【解析】由题分析得a,nn(n1)nn11111110所以aaaa1.12310223101111225.A【解析】abab4ab523,ab3.51tan6.C【解析】tan()tan()2,tan3,441tan1tan24cos2cos2sin2.1tan257.A【解析】Tnn1,当n1时,a1T11,当n2时,an1a2a3a4an1,Tn1n1n1而,为最小项,为最大项a11a1a2.8.D【解析】由已知得函数f(x)既关于原点对称,又关于x1对称,所以周期T=4,,由函数图像可分析与的交点个数为设g(x)log5x2,而g(3)g(7)1f(x)g(x)5.1129.AB【解析】若a0,b0,则ab2ab22,当且仅当ab时取等号.abab2∴A正确;f(x)x3是在R上单调递增的函数,若f(a)f(b),则ab,∴B正确;a23若a0,f(x)x在(0,)单调递减,()a()a,∴C错误;5511若0,则0ab,lnalnb,∴D错误.ab2222xxx2xxx10.BC【解析】x(12n)12n,∴A错误;nn数学第1页{#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}1010122由222(2,∴B正确;sxix,xi10sx)13010i1i11由~B(9,)得,D()2,D(2)4D()8,∴C正确;3数据2,3,4,7,8,10,17,18的第50百分位数是7.5,∴D错误11.ACD【解析】取BD的中点N,BA的中点F,连结MN,NF,EF,则四边形EMNF为平行四边形,MN//EF,MN面BAE,MN//面BAE,∴A正确;假设存在一个位置使得BDAE,取AE中点H,连结BH,DH,显然BHAE,BHBDB,AE面BHD,AEDH,进而有DA=DE,而由题可得DE3DA,∴不存在BDAE,故B错误;当BDEC时,则BDAD,而DEAD,AD面BDE,面BDE面ADE,且面BDE面ADEDE,B到面ADE的距离即B到DE的距离d,在中,126∴正确BDEBE2,BDDE3,由S23d,d,C;BDE23当面BAE面ABCD时,四棱锥BAECD的体积最大,此时棱锥的高为3,1∴正确V1331.D.BAECD311212.ACD【解析】设切点(m,lnm1),kf(m),lnm1m,lnm2,me,mmx所以过原点的切线方程为y,∴A正确;e2x1与f(x)关于yx对称的函数为ye,∴B错误;若过点(a,b)有2条直线与f(x)相切,则点(a,b)在f(x)上方,即bf(a),即blna1,∴C正确;由于xR,lnxx1,lnx1x2,∴D正确.5213.【解析】yx为偶函数,所以g(x)cos(2x),(0,)为奇函数,635k,kZ,.326132h13214.【解析】易得棱台的高h2,V棱台(S上S上S下S下).33321(2a1)2b15.11【解析】a1,b0,2ab2(a1)b2[2(a1)b]()2711,a1bba1b2(a1)2时取等号.数学第2页{#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}16.8【解析】法一:如图建立直角坐标系,设由得:2222A(x,y),AB2ADxy4(x23)y即:3x23y2163x480,8343所以点A的轨迹为以(,0)为圆心,半径为的圆,S2S,33ABCABD43所以当A到x轴距离最大时,即为时,ABC面积最大为8.3法二:设ADm,则AB2m,在ABD中,由余弦定理可知,12124m2m24m2cosA,m2,54cosA24sinAsinA而S2S2m2sinA6(),A(0,),ABCABD554cosAcosA4sinA4由右图可知,最小值为直线MN的斜率,5cosA344故ABC面积的最大值为(6)()8.317.【解析】(1)a11,b11,dq,a4a513d14d8q8dd2,q2..........................................................................................2分n1an2n1,bn2..........................................................................................5分nnn分(2)Sn21,cnanSn(2n1)21(2n1)2(2n1)..............712nTn1232......(2n1)2[135......(2n1)]2n令Sn1232......(2n1)223n12Sn1232......(2n1)223nn1n1分Sn22(22......2)(2n1)26(32n)2............9n1n12分Sn6(2n3)2,Tn6(2n3)2n............10sinAsin(AB)18.【解析】(1)由sinAsinCsin(AC)得sinAsin(AB)sinBsinAsinCsinAsinCsinB,由正弦定理可得:sinAsinCsinBac(acb)(acb)a2c22acb2................................................2分数学第3页{#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}a2c2b212即a2c2b2ac,cosB,B(0,)B.............................4分2ac2313BABC2(2)SacsinBac3,ac4,由BD,4BD(BABC)2.....8分ABC24224a2c22accosBa2c24,a2c228................................................10分b2a2c22accosB28432b42..........................................................12分119.【解析】(1)当a1时,设h(x)f(x)g(x)1exln(x1)1,h(x)ex,x11ex只有一个解x0,x0时h(x)0,1x0时,h(x)0x1h(x)在(1,0)单调递减,(0,)单调递增,....................................................................2分h(x)h(0),而h(0)0,h(x)0,即f(x)g(x)1.......................................................4分(2)法一:若x(1,),f(x)g(x)1恒成立,x1即:aexln1aexlnalnx11a即aexlnaexx1ln(x1)................................................................................6分构造函数m(t)tlnt,易知m(t)在(0,)递增,则不等式为m(aex)m(x1).....................................................................................8分x1x1aexx1a,设(x)(x1)exexx(x)(x1),则(x)在(1,0)递增,0,递减,..................................10分ex分(x)max(0)1,a1............................................................................................12法二:x(1,),f(x)g(x)1恒成立,即aexlnaln(x1)10;令F(x)aexln(x1)lna111F(x)aex(,a0),aex有唯一实数根,设为x,(x1)................................6分x1x1001即x0则(在递减,在(,递增,ae,lnax0ln(x01),Fx)(1,x0)x0)x01x0)分F(x)minF(x0)aeln(x01lna10.....................................................................8即:1,x02ln(x01)10x011设h(x)x2ln(x1)1,显然h(x)在(1,)单调递减,x1数学第4页{#{QQABJYIUggCIABAAARgCAQEwCgCQkAECAKgOxAAEoAABiAFABAA=}#}而(),则分h00h(x0)0,1x00,...................................................................................10分lnaln(x01)x0,x0(1,0],lna0,a1.........................................................1220.【解析】(1)取SC中点F,连接EF,FD,E,F分别为SB,SC的中点,1EF//BC,EFBC,2底面四边形ABCD是矩形,P为棱AD的中点,1PD//BC,PDBC.EF//PD,EFPD,2故四边形PEFD是平行四边形,\PE//FD.......................................

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐