【全国甲卷】四川省凉山州2024届高中毕业班高三年级第三次诊断性检测(凉山三诊)(5.9-5.10)

2024-05-18 · 6页 · 279 K

凉山州第三次诊断性考试文科数学参考答案一,选择题(每题5分,共60分):1-5:BDADB6-10:CCAAC11-12:CC12题解析:令xy0f(0)0,xy1f(1)0,①对;f(x)x2x2x1x2(0,),g(x)g(xy)g(x)g(y),g(x2)g(x1)g(x1)g()xx1x1xf(2)xx21对;当时由知成立,当时,由g(x2)g(x1)g()0②x0①③x0x1x2x1②g(xn)g(x)g(xn1)g(xn)g(xn1)g(x)g(xn)g(x)(n1)g(x)f(xn)f(x)nn1ng(x)nnf(x)nxf(x)xx所以③正确.11由①得f(2)2f()f(1)0f(2)2由③得22f(xn)f(2n)nf(2i)nxn1f(x)2n1f(2)2i1f(2)2n12得④错.nni1ii1二,填空题(每题5分,共20分)3333413.【答案】114.【答案】315【答案】(,]16【答案】22231216题解析:OGBC(AGAO)(ACAB)AGACAGABAO(ACAB)AC212114AB(ACAB)(ACAB)4(91)2333三,解答题(共70分,17题10分,18-22每题12分)17.解:根据扇形统计图易得选择物理类学生为1000(48%24%18%)900人,其中87男生900480人,女生900420,选择历史类100人,其中男生15152310040人,女生10060人55男生女生合计物理类480420900历史类4060100合计5204801000....................................................................................................................................................3分n(adbc)21000(4806042040)2250K26.4106.635(ab)(cd)(ac)(bd)90010052048039所以没有99%把握认为“该校学生选择物理类与性别有关”.................................6分(2)记“至少有一名男生被抽到”为事件M,按照性别分层抽样抽取5人,则抽到男生2名,记作A,B,女生3名,记作C,D,E.从5人中随机抽取2人,共:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}10种不同取法,事件M发生包含:{A,B},{A,C},{A,D},{A,E},{B,C},{B,D},{B,E}共7个基本事件,77由古典概型得P(M),所以至少有1名男生被抽到的概率为................12分.1010解:取18.(1)CC1中点Q,BF中点M,连接EM,MQ,QH.FMGQ1,FM//GQ四边形MQGF为平行四边形MQ//FG...①.......................................................................3分又HQ//DC,DC//AB,AB//EMHQ//EM四边形EMQH为平行四边形EH//MQ...②由①②得EH//FGE,F,G,H四点共面,即点H在平面EFG中................................................................................................................................................6分连接为正四棱柱平面(2)HF,A1C1,HFEGOABCDA1B1C1D1B1D1ACC1A1,又,分别是中点平面平面F,HBB1,DD1FH//B1D1FHACC1A1.FHEFGH平面平面即平面平面分EFGHACC1A1EFGHA1EG...........................................8在中由勾股定理得,由可得四边形为平RTA1C1GA1G3A1E3A1GA1E(1)EFGH行四边形且四边形为菱形为中点EF=FG=5EFGHOEGA1OEG平面平面,平面平面平面EFGHA1EGEFGHA1EGEG,A1OA1EG平面分A1OEFGH...................................................................................10在RTEOH中,OH2,EH5OEEH2OH231SEGHF26EFGH2在中,22RTEOA1A1E3,OE3A1OA1EOE61VSAO4......................................................12分A1EFGH3EFGH1132解:(1)第一个等边三角形顶点坐标B(a,a)代入yx得a,将点121211313413B(aa,a)坐标代入yxa,将点B(aaa,a)坐标代入21222223312232382yx得a,an......................................................................................6分33n3(2)由(1)得1919111911111Tn(...)(1...)anan14n(n1)41223n(n1)4223nn1919n(1)4n14n4........................................................................................................12分yyy220.解:(1)设动点P(x,y),kk3x21(x1).................4分PA2PA1x1x1333(2)易知直线AB斜率不为0.设AB方程为xty2,且t(,).设A(x,y),3311B(x2,y2).xty2y2(3t21)y212ty90(3t210)x21312t9yy,yy,36(t21)0....................6分1213t21213t23(x1)3(x1)由题意易得kk3k2直线BA方程为y2(x1).....①BA1BA2BA11y2y2y直线方程为1分AA2y(x1)......②............................................................................8x11由①②得9x1yyyyyy212121213tx13(x1)(x1)3(ty1)(ty1)3(t2yyt(yy)1)9t212t2121212123(1)13t213t29113x点M横坐标为定值......12分3(9t212t213t2)22备注:非对称式处理方式比较多,此处只提供利用第三定义转化回避非对称式,整体代换,半配凑,硬解方式处理非对称式均给满分.121.解:(1)当m0时,f'(x)(2x1)ex0x..............................................2分;211当x(,)时f'(x)0,f(x)单调递减;当x(,)时f'(x)0,f(x)单调递增...4分221f(x)极小值点是-,无极大值点.....................................................................6分.21(2)f'(x)(2x1)(exm)0x或lnm2e当m时,f'(x)0,函数f(x)单调递增,至多一个零点,不满足条件...7分;ee11当0m时函数f(x)在(,lnm)单调递增,(lnm,-)单调递减,(,)e22单调递增,f(lnm)mlnm(1lnm)0,函数f(x)至多一个零点,不满足..................8分e11当m时,函数f(x)在(,-)单调递增,(-,lnm)单调递减,(lnm,)单调递增.e22f(5)11e519m0,令g(x)exx1,g'(x)ex10x0g(x)在区间xx1x(,0)单调递减,(0,)单调递增,g(x)g(0)0ex1即exeexxee2e2e2xexx2.f(m)(2m1)emm3m2m(2m1)m2m3m2m244e2e25m[(1)m2(1)m1)m(m23m1)0...............................10分24215m28ef()0m8e24e5em1或me5ef(lnm)mlnm(1lnm)00m1或me8e综上:m的取值范围是(,1)(e,).....................................................................12分5e(若用极限说明:x,f(x)0;x,f(x)0,扣1分)22.解:(1)由2x2y2,cosx,siny,则C为422222cossin2cos2,C的极坐标方程为22cos2,由题意易得直线l的极坐标方程为,R....................................4分(2)由题意得=0时2即M(-2,0),N(2,0)1直线l过原点S|MN|y2y,MNP2PP,22cos222联立C,l方程,且cos314,则2cos222cos21314114又ysin,且MN22P33911427所以S22........................................10分MNP299123.解:(1)f(x)12x2x12x2x1当0x时取“=”a1..........5分2181161116(2)法一:由(1)可知a1,原式()(2x22x)2x1x2x22x22x22x11x16x1251x16x1(17)(17216),当x(0,1)时取.2x1x22x1x510分法二:由柯西不等式得2221116111622(14)25原式()(2x22x)()(2x22x)22x22x22x22x22121当且仅当x时取..........................10分2x1x5法三:由权方和不等式得1242(14)225141原式,当x时取.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐