江西省五市九校协作体2022-2023学年高三上学期第一次联考数学(理科)试卷

2023-11-20 · 12页 · 4.8 M

江西省五市九校协作体2023届第一次联考数学理科试卷答案一.序号123456789101112答案DBDCDAAAABDD二.填空题13.18214.15.1016.6解答题:17.解(1)数列是递增的等比数列,且,,,,是方程的两个根,解方程,得,,,,.(2)由(1)得:,,数列的前项和:,且对一切成立,,解得,最小正整数为2022.18.(1)证明:取的中点,连接交于,连接,,因为是菱形,所以,且是的中点,所以且,又,,所以且,所以四边形是平行四边形,所以,又平面,平面,所以,又因为,平面,所以平面,所以平面,又平面,所以平面平面;(2)解:取的中点,由四边形是菱形,,则,是正三角形,,,又平面,所以以为原点,,,为坐标轴建立空间直角坐标系,设在棱上存在点使得平面与平面的夹角为,则,,,,,,则设,,所以,,,,设平面的一个法向量为,,,则,即,令,,得平面的法向量可以为,,解得,所以,则设平面的一个法向量为,则,即,取,得,所以点到平面的距离.19.(1)由频率分步直方图得,得分为17,18的人数分别为6人,12人,所以两人得分之和不大于35分为两人得分均为17分,或两人中1人17分1人18分,所以.(2)又,所以正式测试时,,所以,①所以,所以人;②由正态分布模型,任取1人,每分钟跳绳个数195以上的概率为,即,所以,所以,所以的分布列为0123所以.20(1)设椭圆的右焦点为,连接,根据椭圆的对称性可知,四边形为平行四边形.又,所以而,所以,在四边形中,,所以,在中,根据余弦定理得即化简得.所以椭圆的离心率;。。。。。。5分(2)因为椭圆的上顶点为,所以,所以,又由(1)知,解得,所以椭圆的标准方程为.在中,,,所以,从而,又为线段的中点,即,所以,因此,从而,根据题意可知直线的斜率一定存在,设它的方程为,,,联立消去得①,,根据韦达定理可得,,所以所以,整理得,解得或.又直线不经过点,所以舍去,于是直线的方程为,恒过定点,该点在椭圆内,满足关于的方程①有两个不相等的解,所以直线恒过定点,定点坐标为.。。。。。。12分21.(1);(2)【分析】(1)在内有两个不同的极值点、,等价于在内有两个不同的零点、.研究的单调性和零点情况即可求出a的范围;(2)设,由(1)知且,则,将a=代入要证的不等式,可将不等式化为,令,则不等式化为,问题转化为在(0,1)恒成立即可.(1)函数定义域为,在内有两个不同的极值点、,等价于在内有两个不同的零点、.设,由,当时,,在上单调递增,至多只有一个零点,不符题意;当时,在上,单调递增;在上,单调递减,∴当时,,函数有两个零点,则必有,即,解得.易证,证明如下:令,,当时,,单调递减,当时,单调递增,故,故,得证.∴,又,∴在和上各有一个零点、,此时:00↓极小值↑极大值↓故在定义域内有两个不同的极值点时,a的范围为;(2)方法1:由(1)可知是的两个零点,不防设,由且,得.∵.令,则,记,,则,令,.又,则,即,∴在上单调递增,故,即成立.∴不等式成立.方法2:欲证,由,,则只需证:.不妨设,则且,则,∴,令,则,记,,由,即在上单调递增,故,即成立.故.【点睛】本题第一问关键是找到x=1和x=,判断,,从而根据零点存在性定理判断在和上各有一个零点;第二问的关键是利用是的两个零点用替换a,再利用换元将双变量转化为单变量进行证明.22.(1);(2).【分析】(1)求得的直角坐标方程,再转化为极坐标方程即可;(2)求得曲线的普通方程,结合的直角坐标方程,求得交点的直角坐标,再转化为极坐标即可.【详解】(1)对点,设其直角坐标为,则,即其直角坐标为,故在直角坐标系下的方程为:,由可得:,故的极坐标方程为:.(2)由题可得曲线的普通方程为:,联立,可得,解得或,又,故,则,即曲线C与交点的直角坐标为,设其极坐标为,则,,即曲线C与交点的极坐标为.23、(1)当a=3时,即为,等价于或或,解得或或,则原不等式的解集为;。。。。。。5分(2)不等式的解集非空等价于有解.由,(当且仅当时取得等号),所以,解得,故a的取值范围是.。。。。。。10分

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐