福建省福州第三中学2024-2025学年高三上学期模拟预测数学答案

2025-01-14 · 7页 · 771.9 K

福州三中2024-2025学年第一学期高三第七次质量检测数学答案题号12345678答案CCACCAAC题号9101112131422答案ADABDAC−12027xy+=21.【详解】ii5=,故ab+=ii,所以ab==0,1,ab+=1.故选:C.2.【详解】Axxxxxxxx=−=−=2010{1()或x0},Bxxxxx=+=+=ln10ln1ln10x()(),所以AB=(1,+).故选:C.3.【详解】圆Cxy:(2)1−+=22中圆心为C(2,0),半径r=1,2圆心到直线xy−=0的距离:d==2,则PQ=−21.故选:A.2min4.【详解】因为a,b为单位向量,2221由3ab57−=,所以35499302549abaabb−=−+=,即9302549−+==abab−,()2121−−aa−(b)aa−b23设与夹角为,则cos====,ab−aa−b212aa−b()1−21−+2π又0,π,所以=.故选:C.65.【详解】抛掷一枚质地均匀的骰子朝上的点数,设A表示事件“点数是1点”,B表示事件“点数是3点或5点”,C表示事件“点数是偶数点”,D表示事件“点数是奇数点”,11111PA()=,PB()=,PC()=,PD()=,PAB()=,63222此时满足PABPAPB()()()=+,但PAPB()(),故选项A错误;1PADP()()BD==,但,故选项B错误;2P()()0ACP==BC成立,但,故选项D错误;对于选项C,对于随机事件AB,,且P()0,()0APB,则由AABAB=+得P()()()A=+PABPAB,又B=+BABA,得P(BP)()()=+BAPBA,又因为PAP()()=B,所以P()()()()AB+PAB=PBA+PBA,则P()()AB=PAB,故必要性成立,反之,由可得,所以PAPB()()=,故充分性成立,所以C选项正确.故选:C.答案第1页,共7页{#{QQABLYiAogAoAAAAARgCAw1QCEMQkhGAAQgGQFAEsAIACBFABCA=}#}16.【详解】根据题意可知,每次挖去的三角形面积是被挖三角形面积的,32所以每一次操作之后所得图形的面积是上一次三角形面积的,32n由此可得,第n次操作之后所得图形的面积是,Sn=132164即经过次操作之后所得图形的面积是.故选:.4S4==1A3817.【详解】如图,SC是球O的直径,则==SBCSAC,2所以SASBABACBC=====1,3,在△SAC中,过A作AMS⊥C于M,连接BM,易证BMS⊥C,所以SCA⊥B平M面,3212又因为在△ABM中,AMBMAB===,1,所以S=,则VSSC==.2△ABM436△ABM故选:A.aba2+b2−c28.【详解】由+=3cosC及余弦定理得:a2+b2=3abcosC=3ab,ba2ab则a2+b2=3c2,由正弦定理得:sin2A+sin2B=3sin2C,11所以(1−cos2A)+(1−cos2B)=3(1−cos2C),即3cos2C−cos(A−B)cos(A+B)−2=0,2233又cos(A−B)=−,所以3CCcoscos202,66343ab解得:cosC=或cosC=−,由于3cosC=+2,所以.故选:C.29baπππ9.【详解】因为yxxx==2sincossin2,向右平移个单位得fxxx()=−=−sin2sin2,6632π则最小正周期为T==π,故A选项正确;2ππππ5π令−+2kπ22x−+kπ,解得−+kπx+kπ,2321212π5π所以单调递增区间为−++kkkπ,π,Z,故B选项错误;1212ππ5πkπ令2xk−=+π,解得xk=+,Z,故C选项错误;32122πππ令2xk−=π,解得x=+kπ,Zk所以函数fx()的对称中心为+kkπ,0,Z,故D选项正确.366故选:AD.c210.【详解】设双曲线的半焦距为c,则ca=+21,=,a51−a2+15+15−15+1由题意知=ac22=,=,==a2eac1,A正确.a2222A222(a,0),BF(0,1)c,,0(,,1−=AB,,1−=),10a(FB=)cA−B(FBac=),B正确.x2对于C,双曲线−=y21的渐近线方程为x=ay0,a2答案第2页,共7页{#{QQABLYiAogAoAAAAARgCAw1QCEMQkhGAAQgGQFAEsAIACBFABCA=}#}aa1所以顶点到渐近线距离d===,C错误.a22+1ce对于D,因为A2BFB=0,所以A2FF⊥B,所以A2FB为直角三角形,且ABFAFac22==+90,,2ac+ac++π2225所以的外接圆半径为,故外接球面积Sacac==++=π(2)π,D2244正确.故选:ABD.11.【详解】fx(21+)为奇函数,−+=−+fxfx(2121)(),令x=0,则f(10)=;用x替换2x,则fxfx(−+=−+11)(),又fx(+2)为偶函数,−+=+fxfx(22)(),令x=1,则ff(31)0==();用x+1替换,则fxfx(−+=+13)(),+=−+fxfx(31)(),用x−1替换,则fxfx(+=−2)(),+=fxfxfx(−+=42)()(),则fx()的一个周期为4,fab(1)0=+=a=2由,解得,故A正确;ffb(0)(3)11+=+=−b=−2fff(20235054330)=+==()(),故B错误;由fxfx(−+=+22)(),得fxfxfx(−=+=)(4)(),得为偶函数,故C正确;x1x0,1时,fxff()=−+=22,(0)(1)10−,fx不关于,0对称,故D错误.故选:AC.25rrrrr12.【详解】(12−)x展开式第r+1项Txxr+155=−=−C(2)C(2),2223333333r=2时,xxx−=C(2)405,r=3时,2C(2)1605xx−=−,40160120xx−=−.=−a3120.故答案为:−120.1113.【详解】由题意得:==+=80,5,290,故P(90)(2XP=+=−=X)0.95450.02275,22所以12000.0227527.故答案为:27.14.【详解】由fx()ee=−xx2−得fx()ee=+xx2−0,所以在定义域R上单调递增,又因为f(2)ee−=−x2−xx=−fx(),所以关于(1,0)对称,则fa()=−fa(2−),即f()a+f(2−=a)0,因为fafb()()0+=,所以ba=−2,即ab+−20=,所有满足的点(,)ab中,有且只有一个在圆C上,则直线xy+−20=与圆相切,−2假设圆心C(0,0),所以rd===2,所以圆可以是xy22+=2,11+故答案为:.(注:圆心到直线的距离为半径即可).a15.解:(1)已知Sn=n+2+1,nN*,n2a当n=1时,a=+12,a=4;··············································································1分121答案第3页,共7页{#{QQABLYiAogAoAAAAARgCAw1QCEMQkhGAAQgGQFAEsAIACBFABCA=}#}a当n=2时,aa+=+25,a=2,所以aa+=6.··················································2分122212aa2因为Sn=++n21①,所以Sn=+++n+1(11)②.·················································3分n2n+12aann+122*②-①得,ann=−++−(1),整理得anna+n=++142,nN,·······················6分n+122所以(an+1+an+2)−(an+an+1)=4(n+1)+2−(4n+2)=4(常数),,·························7分所以aann++1是首项为6,公差为4的等差数列.·····················································8分(2)由(1)知,,.所以S20=(a1+a2)+(a3+a4)+(a5+a6)++(a19+a20)=+++++(412)(432)(452)++(4192)····················································10分=+++++413519210()10119+()=+=4210420··············································································13分216.解:(1)连接DB交AC于点O,连接PO.因为ABCD是菱形,所以BD⊥AC,且O为BD的中点,············································2分因为PB=PD,所以PO⊥BD.············································································3分又因为AC,PO平面APC,且ACPOO=,所以BD⊥平面APC.···························4分又BD平面ABCD,所以平面APC⊥平面ABCD;···················································5分(2)取AB中点M,连接DM交AC于点H,连接PH.因为=BAD,所以△ABD是等边三角形,所以DM⊥AB.3又因为PD⊥AB,PDDMD=,PD,DM平面PDM,所以AB⊥平面PDM.所以AB⊥PH.·····································································6分由(1)知BD⊥PH,且ABBDB=,所以PH⊥平面ABCD.···································7分AM23由ABCD是边长为2的菱形,在△ABC中,AH==,AO=ABcos30=3.cos3032343826由AP⊥PC,在△APC中,PH2=AHHC==,所以PH=.·················8分3333以O为坐标原点,OB、OC分别为x轴、y轴建立如图所示空间直角坐标系,················9分3326B1,0,0P0,−,则A(0,−3,0),(),C(0,3,0),H0,−,0,,333答案第4页,共7页{#{QQABLYiAogAoAAAAARgCAw1QCEMQkhGAAQgGQFAEsAIACBFABCA=}#}326所以AB=(1,3,0),CB=−(1,3,0),BP=−−1,,,········································10分33设平面PAB的法向量为n1111xy=z(,,),326nBP1=0−−+=xyz11102所以33,令y=1得n=−−3,1,.·······················11分112nAB1=0xy11+=30设平面PBC的法向量为n2222xy=z(,,),2326nBP=0

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐