吉林省吉林市2024-2025学年高三下学期3月三模数学答案

2025-04-05 · 5页 · 510.5 K

吉林地区普通高中20242025学年度高三年级第三次模拟考试8.教学提示参考选择性必修第二册教材P553(3),科赫雪花曲线.数学学科参考答案若原正三角形的边长为,则雪花曲线满足:1Pn一、单项选择题nn11①边数:n1;②边长:1;③周长:4;12345678an34bnLn333ABBCACDBn1n1348343④面积:SSSSS,其中S.6.教学提示n111111595594先找的外心,发现为线段的四等分点(靠近),ΔAFD1O1O1A1DA1二、多项选择题则球心在过且与平面垂直的直线上91011OO1AD1F.利用几何法或者坐标法均可,坐标法具体做法参考如下:ABABDACD以D为原点,建立如图所示的空间直角坐标系,则11.教学提示33,,,设球心33,O1(,0,)A(2,0,0)E(1,2,0)O(,m,)参考选择性必修第二册教材P8283,牛顿切线法───用导数方法求方程的近似解.222232227f(x)xx1,f(x)3x1,由OAOE,求出m1,从而求出ROA.2在横坐标为的点处的切线斜率为2,7.教学提示yf(x)xn13xn11yz在横坐标为的点处的切线方程为32.xlnxyeelnz5yf(x)xn1y(xn1xn11)(3xn11)(xxn1),y,z,如图所示:3lnx5xe5ylnz5e2x1令y0,则xn1,C选项正确;n2由图知,yzx,故A,B选项错误;3xn11x(也可以通过yx,ye,ylnx图象的变化f(x)3x210在R上恒成立,f(x)在R上单调递增.速度判断x,y,z的大小关系)212f(),f(1)1,则f()f(1)0.yx553273由得,P(,)y5x22.2由零点存在性定理可知,f(x)在R上存在唯一零点r,且r,1.3yex和ylnx关于yx对称,5533A(y,ey)和B(x,lnx)关于P(,)对称,f(r)rr10,则1rr.22xy5且lnxy,lnxy2y5,故C选项错误;3323232xn112xn113rxn1r2xn13rxn1ryyxrrex,ezxzxy5,故D选项正确.n2223xn113xn113xn11第1页共5页(xr)2(2xr)四、解答题n1n1.2.【解析】3xn1115a1(a14d)64,a14,a116,2(Ⅰ)由题意得解得或(舍)要证,只需证2,xnrxn1r2xn1r3xn11a12d10.d3,d3.2an4(n1)33n1,即数列{an}的通项公式是an3n1.·······························4分只需证r3xn12xn11,即证rxn1(3xn12)1,(Ⅱ)①,当时,,得,2Sn2bn1n1b1S12b11b11x,x(3x2)11,n13n1n1当n≥2时,Sn2bn1②,由①②得,SnSn(2bn1)(2bn1),21111r1rxn1(3xn12)1成立.3bn≥化简得,bn2bn1,即2(n2),2b,选项正确.n1xnrxn1rD三、填空题n1数列{bn}是以1为首项,2为公比的等比数列,bn2.········································8分25812.13.214.(2分);(3分)n1,337cnanbn3n1214.教学提示n[4(3n1)]1(12n)3n25n35T2n12nn2n1.·····················13分n212222|PF||AF|5511,,,n[4(3n1)]35由角平分线定理可知,|F1F2|2c|PF1|c(或n2)|PF||AF|34Tn2bn12nn122222.【解析】由双曲线定义可知,,,16|AF1||AF2|2a|AF1|5a|AF2|3a(Ⅰ)(法一)X的所有可能取值为0,1,2,且X服从超几何分布.在中,由余弦定理可得,2222π,ΔAF1F24c(5a)(3a)25a3acos3021120C3C31C3C33C3C312,,.P(X0)2P(X1)2P(X2)2222c4974c49a,e,e1,e,C65C65C65a242的分布列为连接,为内心,是的角平分线,X0F1IIΔAF1F2F1IAF1F2X12131AIAFaaP在中,由角平分线定理可知|||1|5448.ΔAF1P555|IP||PF|5ce71c4·····························································································································4分131X的数学期望E(X)0121.···························································5分555(法二)X服从超几何分布,且N6,M3,n2.扫码查看圆锥曲线的光学性质及动态演示过程第2页共5页k2kCCx2X的分布列为P(Xk)33,k0,1,2.···················································4分y21,C2由4消去x,得(t24)y22mtym240.6xtymnM23X的数学期望E(X)1.······································································5分N62mtm2422Δ16(tm4)0,y1y22,y1y22,··········································8分t4t4(Ⅱ)(i)记C“每位员工经过培训合格”,A“每位员工第i轮培训达到优秀”(i1,2,3),i8mx1x2ty1mty2mt(y1y2)2m2,t4,根据概率加法公式和事件相互独立定义得,CA1A2A3A1A2A3A1A2A3A1A2A322224m4tx1x2(ty1m)(ty2m)ty1y2mt(y1y2)m,t24P(C)P(A1A2A3)P(A1A2A3)P(A1A2A3)P(A1A2A3),,MA(x12,y1)MB(x22,y2)MAMB,P(A)P(A)P(A)P(A)P(A)P(A)P(A)P(A)P(A)P(A)P(A)P(A)2221231231231234m4t16mm4MAMB(x2)(x2)yyxx2(xx)4yy4021111121121211212121212222.t4t4t4323323323323226化简得5m16m120,m,或m2(舍)15即每位员工经过培训合格的概率为.·······································································10分262111112112121直线AB过定点D,0.····················································································12分(注:记C“每位员工经过培训合格”,P(C).53233233233232上述求解方法给满分.)(注:此处亦可按如下方法求m1()记,两部门开展培训后合格的人数为,则,yyyyyyiiABDeepSeekYY~B(50,)1212122kMAkMB22x2x2(tym2)(tym2)tyyt(m2)(yy)(m2)112121212E(Y)5025.·····························································································12分2m24m26则253025205031100(万元)1,m)4(m2)24(m2)5即估计A,B两部门的员工参加DeepSeek培训后为公司创造的年利润为1100万元.········15分811设E为MD的中点,即E,0.(注:直接列式503050205031100(万元)给满分.)5221142若N与D不重合,则MD是RtΔMND的斜边,|NE||MD|;17.【解析】22551142c3若N与D重合,则|NE||MD|.(Ⅰ)e,a2,c3,b2a2c2431,2255a282x2综上所述,存在定点E,0,使得|NE|为定值.···················································15分即椭圆C的标准方程为y21.············································································4分554(Ⅱ)(法一)由题可知,直线AB的斜率不为0,(法二)当直线斜率不存在时,设,,,,1ABA(x0,y0)B(x0,y0)M(2,0)MA(x02,y0)设直线的方程为,设,,ABxtymA(x1,y1)B(x2,y2)1MB(x2,y),MAMB,MAMB(x2)2y2x24x41x20,00000040第3页共5页65x216x120,解得x2,不符题意(舍),或x,符合题意.8200005综上所述,存在定点E,0,使得|NE|为定值.···················································15分556直线AB过点D,0.························································································6分18.【解析】5ACAB233(Ⅰ)ΔABC中,由正弦定理得,即,当直线斜率存在时,设直线的方程为,设,,sinABCsinACBsinABCπ2ABABykxm(k0)A(x1,y1)B(x2,y2)sin32故,又,π.分x2sinABC10ABCπABCBCAB····································2y1,2222由4消去y,得(14k)x8kmx4m40.又ΔACD为正三角形,CADACB,AD//BCADAB.·································4分ykxm又平面,平面分AA1ABCDADABCDAD

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐