四川省达州市普通高中2025届第二次诊断性测试数学答案

2025-04-22 · 4页 · 206.7 K

达州市普通高中2025第二次诊断测试数学参考答案1.D2.C3.A4.B5.A6.A7.B8.C9.BC10.AC11.ABD2...或126013π141202e215.解:(1)由题知体重在40,50,50,60,60,70的频率分别为0.05,0.25,0.4.∴中位数x位于60,70内则0.050.25(x60)0.040.5,解得x65∴样本体重的中位数为65(2)设体重在60,70,70,80按分层抽样的抽取人数分别为m,n.mn6则,解得m4,n240204020由题知X的可能取值为3,1,1C31C2C13C1C214,42,42P(X3)3P(X1)3P(X1)3C65C65C65∴X的分布列为:X311……………………………………P131555131∴E(X)31(1)1555.解:()取中点,连接,∵,分别为,中点161B1CDNDA1D.DNB1CBC.∴//,又∵三棱柱中,//,分别为中点NDBB1ABCA1B1C1BB1AA1MAA1∴//且,∴四边形为平行四边形DNA1MDNA1MA1MND∴//,∵平面,平面,MNA1DA1DA1B1CMNA1B1C∴平面MN//A1B1C()取中点,连接∵△和△均2ACOA1O,BO,ABCA1AC为等边三角形,∴,,∵侧面A1zA1OACOBACC1底面且为交线,B1A1ACC1ABCACM∴AO平面ABC,以O为原点,OB,OC,OA所在直11D线为x,y,z轴建立空间直角坐标系Oxyz,设AB2,AO则,,,,yA(0,1,0)B(3,0,0)A1(0,0,3)C(0,1,0)CxBN133133xM(0,,)N(,,0)MC(0,,),2222,2231NC(,,0),AC(0,1,3),ABAB(3,1,0),22111设平面的一个法向量,MNCm(x1,y1,z1)数学答案第1页(共4页)33yz0,mMC0,11∴,22,令,则,,y13x11z13mNC031xy02121∴平面MNC的一个法向量m(1,3,3).设平面的一个法向量,则A1B1Cn(x2,y2,z2)nAB0,3xy0,1122令,则,,,y23x21z21nA1C0y23z20,∴平面的一个法向量,A1B1Cn(1,3,1)mn565∵cosm,n.|m||n|1351365∴平面MNC与平面ABC的夹角的余弦值为.1113ab17.解:(1)在△ABC中由正弦定理代入tanBtanA化简得,sin2AcosBsin2BcosA,∴(1cos2A)cosB(1cos2B)cosA.可得(cosAcosB)(1cosAcosB)0∵在△ABC中1cosAcosB0,∴cosAcosB,又∵A,B为△ABC内角,∴AB,即△ABC为等腰三角形(2)∵D为AB中点,由(1)知ab,CDAB,C1Cc∴△ABC的面积SCACD2bcoscCDc,cos2222bC2c2又∵Rt△CAD中,cos,∴,∴c4.2b2bbCD2π又∵tanA1.0Aπ,∴AADc42πππ∴Cπ.442(3)设△ABC周长为l,则labc2bcCD24422∵tanA,∴c,sinA,∴bADcctanAbsinA2A42cos2444(1cosA)4l2bc2AAAsinAtanAsinA2sincostan222πAπAAπ∵A0,,∴0,,ytan在0,上为增函数326226Aπ34∴(tan)maxtan,lmin4326333数学答案第2页(共4页)18.解:(1)∵f(x)exa,①当a≤0时,f(x)0,yf(x)在xR上单调递增.②当a0时,令f'(x)0,解得xlna,令f'(x)0,解得xlna综上所述,当a≤0时,yf(x)在(,)上单调递增,当a0时yf(x)在(lna,)上单调递增,在(,lna)上单调递减(2)x≥0时,f(x)≥(x1)2恒成立,即exax(x1)2≥0在x≥0时恒成立.①x0,不等式对aR均成立.ex(x1)2ex(x1)2②x0,不等式可化为a≤,令g(x),则只需a≤g(x)xxminx(x1)(ex1)xx∵g'(x),(x)ex1,'(x)e1,当x0时'(x)0x2∴y(x)在x0时单调递增,(x)(0)0,即exx10.∴当x1时,g'(x)0,yg(x)单调递增,当0x1时,g'(x)0,yg(x)单调递减.∴,∴,即取值范围为g(x)ming(1)e4a≤e4a,e4(3)当a=1时,f(x)exx,令h(x)exxlnx1,1h'(x)ex1,显然x0时,yh'(x)单调递增x1∵h'(1)e20,h'()e30.2111存在,使得,即x0,x0x0,1h'(x0)0e10e12x0x0当时,,单调递减,0xx0h'(x0)0yh(x)当时,,单调递增.xx0h'(x0)0yh(x)1∴x0,h(x)minh(x0)ex0lnx01x0lnx0x011令m(x)xlnx,显然ym(x)在x,1单调递减,m(x)m(1)0,x2∴,即x,∴.h(x)min0exlnx10f(x)lnx1.解:由题可知2,,即,19(1)c211c1F1(1,0)F2(1,0)设,,由得,P(x1,y1)Q(x2,y2)OP2OQOF1(x1,y1)2(x2,y2)(1,0)x12x2∴.设直线l方程为xty1y12y20∴.x12x2ty112(ty21)t(y12y2)33∴3xx(2)i由题可设直线PT方程为1yy1,设直线PT与圆x2y22得交点为(x,y),2133,(x4,y4)x1x2y1y1x由可得2222,∵122(x14y1)x4x1x48y10y11222xy2∴222,解得(4x1)x4x1x4(x11)0数学答案第3页(共4页)2(x1)2(x1)11x3x42x12x1,,222x12y2x12yy1y134y1(2x1)2x1y1(2x1)2x1设直线与圆22得交点为,,同理可得QTxy2(x5,y5)(x6,y6)2(x1)2(x1)22x5x62x22x2,,∵x3x1x4x5x2x62x22y2x22y,y22y2256y2(2x2)2x2y2(2x2)2x2∴,坐标应为,.MNM(x3,y3)N(x5,y5)2(x1)2y2(x1)2y4y(x1)4y(x1)∵12212121x3y5x5y32x12x22x22x1(2x1)(2x2),,∴x1ty11x2ty21x3y5x5y30即OM//ON,又∵OMONO,∴M,O,N三点共线.(ii)设T(m,n),点T在直线PT和QT上,满足xm1yn121mx,∴直线l方程可写为ny1,xm22yn122又∵直线l方程为xty1,∴m2,nt,即T(2,t)t21点T到直线l的距离dt21,t21直线l方程为xty1代入椭圆方程得(t22)y22ty102t1由韦达定理得yy,yy,8t28012t2212t22222PQ1ty1y21t(y1y2)4y1y22t4221t21t2()2t22t22t221122(t21)∴△TPQ的面积SPQdt21,22t2223令t21≥1,t221,S212(432)2S'0,∴yS()在≥1时单调递增,∴SS(1),△TPQ(21)2min22面积的最小值为2数学答案第4页(共4页)

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐