邕衡金卷广西2023届高三一轮复习诊断性联考文科数学答案123456789101112DCCCBBDABDAAz12i121.D【解析】z12i,zz(12i)(12i)123.i故选:Dzz36662.C23.C【解析】因为Axy25x,25x20,所以Ax5x52,则或Bxx4x120x6x2ðRBxx6x2故,故选:C.AðRBx2x54.C【解析】由几何体的三视图可知几何体的直观图如下:所以VSh24432.故选:C5.B【解析】fx2sinx的图象关于直线x对称,所以3311k,kZ,即3k,kZ,当k0时,.3322min26.B【解析】记2个“冰墩墩”为a,b,记3个“雪容融”为1,2,3,选取两个吉祥物作为冬奥会纪念品的基本事件有:a,b,a,1,a,2,a,3,b,1,b,2,b,3,1,2,1,3,632,3,共10个。其中选取到1个“冰墩墩”和1个“雪容融”有6个基本事件,则概率为.105x2(sin2x)12sin27.D【解析】因为f(x)fx,所以fx是偶函数,故A,C错误;f(1)0,2x2x2121选项B符合函数fx,B不符合。故选:D.exex(ax2)aexex(ax2a)8.A【解析】∵函数fx,∴f(x)ax2(ax2)2(ax2)2e1(a2a)∴f(1)0,∴a1(a2)2ex(x2)exex(x1)∴f(x)x2,(x2)2(x2)2∴当2x<1时,f(x)0,即函数fx在(2,1)上单调递减,当x1时,f(x)0,即函数fx在(1,)上单调递增,1所以fx在x1处取得极小值即最小值,∴f(x)minf(1),ex∵函数fx在2,b上有最小值,∴b1,即b1,;故选:A.x23h11h39.B【解析】设圆锥高为h,底面圆半径r,圆锥的体积为Vh2h,313393h2h122h3圆柱的半径r,高为,体积为Vh2h,所以V:V2:9.932273811210.D【解析】依题意可得0,因为x0,,所以x,,666要使函数在区间0,恰有三个极值点、三个零点,作出y2sint的图象,容易得到5819819则<3,解得<,即,.故选:D.26363611.A【解析】由题意得,点M为PQ中点bb2kkkkk,M(-4,1)PQBF1BF2cOMPQa22b4b222442252k4bca16bca,16e16e10ePQca2412.A【解析】方法一:构造法1x设f(x)ln(1x)x(x1),因为f(x)1,1x1x当x(1,0)时,f(x)0,当x(0,)时f(x)0,所以函数f(x)ln(1x)x在(0,)单调递减,在(1,0)上单调递增,3103310所以f()f(0)0,所以ln0,故lnln0.7,即ca,7777733373733所以f()f(0)0,所以ln+0,故e10,所以e10,故bc,101010101072xx1x1e1设g(x)xeln(1x)(0x1),则g(x)x+1ex,x1x1令h(x)ex(x21)+1,h(x)ex(x22x1),当0x21时,h(x)0,函数h(x)ex(x21)+1单调递减,2当21x1时,h(x)0,函数h(x)ex(x21)+1单调递增,又h(0)0,所以当0x21时,h(x)0,所以当0x21时,g(x)0,函数g(x)xexln(1x)单调递增,所以g(0.3)g(0)0,即0.3e0.3ln0.7,所以ba故选:A.方法二:比较法0.3解:aln(10.3),b0.3e0.3,c10.3①lnblnc0.3ln(10.3),令f(x)xln(1x),x(0,0.3],1x则f(x)10,故f(x)在(0,0.3]上单调递减,1x1x可得f(0.3)f(0)0,即lnblnc0,所以bc;②ba0.3e0.3ln(10.3),令g(x)xexln(1x),x(0,0.3],11x1xex1则g'xxexex,1x1x令k(x)(1x)(1x)ex1,所以k(x)(1x22x)ex0,所以k(x)在(0,0.3]上单调递增,可得k(x)k(0)0,即g(x)0,所以g(x)在(0,0.3]上单调递增,可得g(0.3)g(0)0,即ba0,所以ba.故abc.113.1【解析】由投影的定义知,a在b方向上的投影为acos21.3214.315.2【解析】由题意得,四边形是矩形,由焦点三角形面积公式得PF1QF2,.2S矩形2SFPF2FPFbtan1tan451PF1QF2112264316.【解析】在ABC中,设ABc,BCa,ACb,91321由AD3DC,则BDBABC,则BD(c29a23ac),4416256162c29a23ac9ac,即ac,9313643Sacsinac,当且仅当3ac时取等号.ABC2349643所以ABC面积的最大值为.917.解:(1)根据表格可得男生观看人数为5+6+15+12+12+14+14+10+248=120....(2分)女生观看人数为4+6+7+17+11+13+13+8+8+13=100..............................(4分)所以可得列联表:观看没观看合计男生12080200女生100100200合计220180400..................(6分)(表格数据对了,没有式子也可以得6分)240012010010080400(2)由题可得K24.0403.841,(列出K2的表达式给222018020020099400分,计算出给1分,计算出4.040给2分,与3.841比较给1分)99所以有95%的把握认为观看该影片与性别有关.(不回答或回答不标准扣1分)...(12分)1118.解:(1)当n1,S2a,a,....................................(1分)114141因为S2a.①,nn41当n2时,S2a.②,............................................(2分)n1n14①②得,SnSn12an2an1,.............................................(3分)即an2an2an1,所以an2an1,n2且nN*,1所以a是以为首项,2为公比的等比数列................................(6分)n4n3n3(2)由(1)可得an2,bnlog22n3................................(8分)4nn12所以1251525,..........................(10分)Tn2nnnn222228所以,当或时,......................................(12分)n2n3Tnmin319.(1)延长DCIABE,连接ME交PB于F,连接FC,如图,四边形MFCD为截面.............................................(3分)(延长CD给1分,连接ME给1分,截面1分.)BC1ADE中,BC//AD,由,则C为DE中点,B为AE中点...........(4分)AD21过M作MN//AB交PB于N,则MNAB1,MN//AB.2(5分)FNMN1MNF:EBFBFBE21BF2NF,即BFBP.......................(6分)3(2)VABCDMFVEMADVEFBC........................(7分)116VSgAE................................................(9分)EMAD3ADM3118VVSgPA........................................(11分)EFBCFBEC3BFC3940VVV............................................(12分)ABCDMFEMADEFBC9p20.解:(1)抛物线的准线为x,当MD与x轴垂直时,点M的横坐标为p,2p此时MF=p3.........................................................(2分)2所以p2.................................................................(3分)所以抛物线C的方程为y24x...............................................(4分)2222y1y2y3y4(2)设P,y1,Q,y2,R,y3,S,y4,4444显然直线PQ的斜率不为0,................................................(5分)设直线PQ:xmy1,与抛物线y24x联立可得y24my40,且0则y1.y24................................................................(6分)5由P,B,R三点共线,...................................................(7分)y1yy313y114y22231故kBRkPR,∴yyy即2,即y3...............(9分)3113y4yyy14443131同理:由Q,B,S三点共线,y1yy424y114y22242故kBSkQS,∴yyy即2,即y4.............(10分)4124y4yyy14444242yyyy4444kk23144QRPS2222所以y2y3y1y4y2y3y1y44y14y2,所以直线y2y14444y11y21QR与直线PS的斜率之和为定值-4.......................................(12分)21.解(1)当a1时,函数f(x)x(lnx1).f(x)lnx2,...............(1分)则f(1)2,.............................................................(2分)
邕衡金卷广西2023届高三一轮复习诊断性联考文科数学试卷答案
2023-11-21
·
8页
·
209.2 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片