2023年3月高中毕业班联合调研考试文科数学参考答案及评分标准一、选择题(每小题5分,共60分)1.B2.A3.C4.A5.C6.D7.C8.D9.B10.C11.C12.D二、填空题(每小题5分,共20分)625113.114.315.2316.,22三、解答题(共70分)17.(12分)解:(1)由题意知: =45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,..................5分 ∴这些参赛考生的竞赛平均成绩 为70.5..................................................................6分(2)由图可知,90,100的考生占比100.0110%;80,100的考生占比100.0100.01525%,...................................................7分故进入复赛的分数线x在80~90之间,且100.01090x0.01516%,....10分解得x86,故进入复赛的分数线为86...............................................................12分18.(12分)解:(1)证明:连接BC1,设BC11BCO,连接AO.AA1BCC11B为菱形B11CBC,且OBCBC为11,的中点.............................................................2分CC1O又,B11CABBCABBBB1BC11平面ABC.............................4分ACABC11平面,B11CAC.....................................................................................................6分(2)由(1)知B11C平面ABC,又AO平面ABC1B1CAO,.............................7分1又ACAB,O为BC的中点,OABC1121由菱形BCC11B,CBB1=60°,ABBC2B1C2,OA1,OB3OA222OBAB,OAOB...................................................................................9分BC11OBO,OA平面BCCB1...............................................................................10分1123VSOA231.............................................................12分ABCCB11333BCCB11数学文科答案第1页,共4页19.(12分)解:(1)设等比数列an的公比为q.由题意,可知aaq114325.........................................................................................................2分()3aq11aqa11解得....................................................................................................................4分q3nn11an133.....................................................................................................5分(2)由题设及(1)可知:n1当n为奇数时,bann3,..................................................................................6分n2当n为偶数时,bbnn11nann3n,...................................................7分3,n1n为奇数故bnn2,3,nn为偶数Tbbbb2nnn1234…b212b()()bbb135……b2124nnbbb2(302433………322024nn)(3333222462n).....8分2(302433……322n)(2462n)..............................................9分132nnn(22)2......................................................................................11分19291nnn(1).............................................................................................12分420.(12分)解:(1)当a2时,fx()ex2解,得;解,得fx()0xln2fx()0xln2,故fx()在,ln2上单调递减,在ln2,上单调递增..................................4分(2)f()xeax当时,afxfx0()0,()在上R单调递增,此时f()x无两个零点;..................5分当afxxafxxa0()0,ln;()0,ln时,解得解得,故fx()在,lna上单调递减,在ln,a上单调递增...................................7分因为xfxxfx,;,故f()x有两不同零点,则fx()minflna0即aaaeln20........................................................................................................9分数学文科答案第2页,共4页令g()aaaaeln2则g()aa1ln1lna当0agaga1时,()0,()单调递增,当agaga1()0,()时,单调递减,........................................................................10分且01()(1ln)0agaaaege时,22;又()=0当时,ae2ga()0................................................................................................11分综上,a的范围为e2,...........................................................................................12分21.(12分)解:(1)由题知,p2,∴C的方程为y24x..................................................................................................4分(2)抛物线Cy:42x的焦点F(1,0),设P(2,)t,过P点的抛物线C的切线方程为:x2()myt,yx24消去x得:ymymt244(2)0,①x2()myt△16mmt216(2)0即mtm220,②.....................................................5分此时①可化为ymym22440,解得ym2设直线PAx:2my1(t),直线PBx:2m2(yt),则mm12,为方程②的两根,故mm12t,mm122,(*)................................7分22且yAB2,m12y2m,可得A(,2)mm11,B(,2)mm22,tt由②知,mtm2220,mtm20,故xy20,xy20,1122AA22BBt则直线AB方程为:xy20,显然t02t则直线NF方程为:yx(1),283故M(2,),Nt(2,),.............................................................................................9分t283t38t16||||43MN,当且仅当时,t2时取等号.此时,....................10分t22t3222222||(ABxABx)(yABy)(m12m)(22)m1m222()4()4mm12mm12mm12221616470由(*)得,||ABt4t4248............12分333数学文科答案第3页,共4页22.(10分)解:(1)曲线C1是以C1(4,0)为圆心的半圆, 所以半圆的极坐标方程为 =8cos (0≤ ≤),.................................................3分 π曲线C以C2(3,)为圆心的圆,转换为极坐标方程为 =2√3 (0≤ ≤ ).22..........................................................................................................................................5分 (2)由(1)得:| |=| − |=|8cos−2√3sin|=1..........................7分 333点C到直线 的距离dOCsin300............................................................9分22211√3√3所以 =×| |⋅ =×1×=.................................................10分△ 222423.(12分)(1)设 ( )=2| −3|−| |−1,则5,xx≤0fx()53,0xx3.............................................................................................2分xx7,≤3fx()在-,0单调递减,03,单调递减,3+,单调递增.fx()
2023届广西桂三市高三联合调研考试丨文数答案
2023-11-22
·
4页
·
275.2 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片