泉州市2023届高中毕业班质量监测(三)数学试卷

2023-11-22 · 8页 · 307.5 K

泉州市2023届高中毕业班质量监测(三)2023.03高三数学本试卷共22题,满分150分,共8页。考试用时120分钟。注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上。2.考生作答时,将答案答在答题卡上。请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效。在草稿纸、试题卷上答题无效。3.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。4.保持答题卡卡面清洁,不折叠、不破损。考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合A={x|-5<x<2},B={x||x|<3},则AUB=A.(-∞,2)B.(-00,3)C.(-3,2)D.(-5,3)2.已知复数z满足(1-i)z=4i,则z·z=A.-8B.0C.8D.8i3.已知sinα−2cosα=0,则cos2α=A.−13B.0C.13D.234.某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为A.78B.34C.14D.18高三数学试题第1页(共8页) 5.已知抛物线C的焦点为F,准线为l,点A在C上,点B在l上.若|AF|=|BF|=4,AF·(BF+BA)=0,则F到l的距离等于A.1B.2C.3D.46.定义在R上的偶函数f(x)满足f(2-x)+f(x)=0,且当x∈[0,1]时,f(x)=x−1,则曲线y=f(x)在点(−94,f(−94))处的切线方程为A.4x-4y+11=0B.4x+4y+11=0C.4x-4y+7=0D.4x+4y+7=07.图1中,正方体ABCD-EFGH的每条棱与正八面体MPORSN(八个面均为正三角形)的一条棱垂直且互相平分.将该正方体的顶点与正八面体的顶点连结,得到图2的十二面体,该十二面体能独立密铺三维空间.若AB=1,则点M到直线RG的距离等于A.2B.3c.62D.728.已知平面向量a,b,c满足|a|=1,b·c=0,a·b=1,a·c=-1,则b+c|的最小值为A.1B.2C.2D.4高三数学试题第2页(共8页) 二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,有选错的得0分,部分选对的得2分。9.已知AB为圆C:x2+y2=4的直径,直线l:y=k+1与y轴交于点M,则A.l与C恒有公共点B.△ABM是钝角三角形C.△ABM的面积的最大值为1D.l被C截得的弦的长度的最小值为2310.已知函数f(x)=sinxcosx,g(x)=sinx+cosx,则A.f(x)与g(x)均在(0,π4)单调递增B.f(x)的图象可由g(x)的图象平移得到C.f(x)图象的对称轴均为g(x)图象的对称轴D.函数y=f(x)+g(x)的最大值为12+211.在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=1,点P,Q在底面A1B1C1D1内,直线AP与该长方体的每一条棱所成的角都相等,且AP⊥CQ,则A.AP=2B.点Q的轨迹长度为2C.三棱锥D-A1QB的体积为定值D.AP与该长方体的每个面所成的角都相等12.某商场设有电子盲盒机,每个盲盒外观完全相同,规定每个玩家只能用一个账号登陆,且每次只能随机选择一个开启.已知玩家第一次抽盲盒,抽中奖品的概率为27,从第二次抽盲盒开始,若前一次没抽中奖品,则这次抽中的概率为12,若前一次抽中奖品;则这次抽中的概率为13.记玩家第n次抽盲盒,抽中奖品的概率为Pn,则A.P2=1942B.数列{Pn−37}为等比数列C.P≤1942D.当n≥2时,n越大,Pn越小高三数学试题第3页(共8页) 三、填空题:本题共4小题,每小题5分,共20分。13.设随机变量X~N(72,σ2),若P(70<X<73)=0.3,则P(71<X<74)=_____.14.已知(x+m)6=a0+a1x+a2x2+a3x3+a4x4+a5x3+a6x6,且a3+a6=1,则m=_____.15.已知函数f(x)=|ex-1|-ax有两个零点,则实数a的取值范围为_______.16.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,C的渐近线与圆x2+y2=a2在第一象限的交点为M,线段MF2与C交于点N,O为坐标原点.若MF1∥ON,则C的离心率为________.四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)在△ABC中,角A,B,C所对的边分别为a,b,c,(a+c)sinA=sinA+sinC,c2+c=b2-1.(1)求B;(2)已知D为AC的中点,BD=32,求△ABC的面积.高三数学试题第4页(共8页) 18.(12分)已知{an}为等差数列,且an+1=2an-2n+3.(1)求{an}的首项和公差;(2)数列{bn}满足bn=1ak∙ak+1,n=3k−2,(−1)n∙an,3k−1≤n≤3k,其中k,n∈N*,求i=160bi.19.(12分)如图,三棱台ABC-A1B1C1中,AB=BC=2B1C1=2,D是AC的中点,E是棱BC上的动点.(1)试确定点E的位置,使AB1∥平面DEC1;(2)已知AB⊥BC1,CC1⊥平面ABC.设直线BC1与平面DEC1,所成的角为θ,试在(1)的条件下,求cosθ的最小值.高三数学试题第5页(共8页) 20.(12分)港珠澳大桥海底隧道是当今世界上埋深最大、综合技术难度最高的沉管隧道,建设过程中突破了许多世界级难题,其建成标志着我国在隧道建设领域已达到世界领先水平.在开挖隧道施工过程中,若隧道拱顶下沉速率过快,无法保证工程施工的安全性,则需及时调整支护参数.某施工队对正在施工的隧道工程进行下沉量监控量测工作,通过对监控量测结果进行回归分析,建立前t天隧道拱顶的累加总下沉量z(单位:毫米)与时间t(单位:天)的回归方程,通过回归方程预测是否需要调整支护参数.已知该隧道拱顶下沉的实测数据如下表所示:11234567z0.010.040.140.521.382.314.3研究人员制作相应散点图,通过观察,拟用函数z=kebt进行拟合.令u=lnz,计算得:(1)请判断是否可以用线性回归模型拟合u与t的关系;(通常|r|>0.75时,认为可以用线性回归模型拟合变量间的关系)(2)试建立z与t的回归方程,并预测前8天该隧道拱顶的累加总下沉量;(3)已知当拱顶下沉速率超过9毫米/天,支护系统将超负荷,隧道有塌方风险.若规定每天下午6点为调整支护参数的时间,试估计最迟在第几天需调整支护参数,才能避免塌方.②回归直线中斜率和截距的最小二乘估计公式分别为:③参考数据:210≈14.5,ln10≈2.30.高三数学试题第6页(共8页)21.(12分)已知椭圆C:x24+y33=1的左、右顶点分别为A,B.直线l与C相切,且与圆O:x2+y2=4交于M,N两点,M在N的左侧.(1)若|MN|=455,求l的斜率;(2)记直线AM,BN的斜率分别为k1,k2,证明:k1k2为定值.高三数学试题第7页(共8页) 22.(12分)已知f(x)=12x2-a(x-1)-xlnx有两个极值点x1,x2,且x1<x2.(1)求a的范围;(2)当0<a≤1-ln2时,证明:a+12<f(x1)+f(x2)<1.高三数学试题第8页(共8页)

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐