泉州市2023届高三适应性练习卷 数学答案

2023-11-23 · 18页 · 1.2 M

保密★使用前泉州市2023届高三适应性练习卷一、二选择题答案2023.051-8DACBACBB9.ACD10.AC11.AD12.BCD三、填空题:本题共4小题,每小题5分,共20分。13.曲线ysin2x在点(0,0)处的切线方程为_________.【命题意图】本小题主要考查导数的几何意义等基础知识;考查运算求解等;体现基础性,导向对数学运算等核心素养的关注.【试题解析】因为,所以,所以,可得曲线在点ysin2xy2cos2xy|x02ysin2x(0,0)处的切线方程为:y2x.14.已知定义在R上的函数f(x)满足:f(x2)为偶函数;当x(,2]时,f(x)x2.写出f(x)的一个单调递增区间为_________.【命题意图】本小题主要考查函数的对称性和单调性等基础知识;考查推理论证能力等;考查数形结合思想、化归与转化思想等,体现基础性,导向对直观想象等核心素养的关注.【试题解析】因为f(x2)为偶函数,所以f(x2)f(x2),因此f(x)的图象关于直线x2对称.当x(,2]时,f(x)x2,所以f(x)在(,0]单调递减,在[0,2]单调递增.由对称性,可得f(x)在[2,4]单调递减,在[4,)单调递增.故f(x)的一个单调递增区间为[0,2],[4,).注:只要写出一个答案就可以,同时区间端点除处只能用开区间外,其他的用开闭符号都可以。315.在平面直角坐标系xOy中,已知抛物线C:y26x的焦点为F,过D(,0)的直线l与C2|AF|交于A,B两点.若△ABF的面积等于△OAD的面积的2倍,则________.|BF|【命题意图】本小题主要考查抛物线的定义及标准方程、直线与抛物线的位置关系等基础知识;考查运算求解等;考查数形结合思想、化归与转化思想等,体现基础性,导向对数学运算、直观想象等核心素养的关注.高三数学试题第1页(共12页)33【试题解析】由题意,知抛物线C:y26x的焦点F(,0),准线l:x.设O,F到直线AB22d|DF|1的距离分别为,则2,又,d1,d22S△OAD|DA|d1d1|DO|21S|AB|d,从而△FAB2,所以.分别过点S△FAB|AB|d22|DA||AB|2S△OAD|DA|d1作于,于,则,,∥,A,BAA1lA1BB1lB1|FA||AA1||FB||BB1|AA1BB1|FA||AA||DA|11所以1,故答案为.|FB||BB1||DB|2216.将0,1,2,3,10任意排成一行,可以组成个不同的6位数.(用数字作答)【命题意图】本小题主要考查分类加法计数原理、分步乘法计数原理、排列等基础知识;考查运算求解等能力;考查化归与转化等思想;体现综合性,导向对数学运算、数学建模等核心素养的关注.4【试题解析】解法一:将0,1,2,3,10任意排成一行,且数字0不在首位,有4A496种,4数字1和0相邻且1在0之前的排法有A424种,24故所求满足题意的6位数有9684个.2解法二:将0,1,2,3,10任意排成一行,可以组成满足题意的6位数的情况分为如下三类:2第一类,1和0相邻,且1在0之前,此时有A412个;3第二类,1和0相邻,且0在1之前,此时有3A318个;312第三类,1和0不相邻,此时有A3(A3A3)54个;故所求满足题意的6位数共有12185484个.高三数学试题第2页(共12页)四、解答题:本题共6小题,共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)数列{an}中,a11,且an12ann1.(1)证明:数列{ann}为等比数列,并求出an;(2)记数列{bn}的前n项和为Sn.若anbn2Sn,求S11.【命题意图】本小题主要考查等比数列的定义与前n项和等基础知识,考查运算求解能力,考查函数与方程、化归与转化、分类与整合等思想,体现基础性和综合性,导向对发展数学运算等核心素养的关注.【试题解析】解法一:(1)由an12ann1可得an1n12(ann),····································1分因为a11,所以a112,····························································2分所以数列{ann}是首项为2,公比为2的等比数列.···························3分nn所以ann2,即an2n.······················································4分(2)因为anbn2Sn,当n…2时,an1bn12Sn1,·························································5分所以anan1bnbn12(SnSn1),即bn1bnanan1.·················6分nn1n1又anan12n[2(n1)]21,n1所以bn1bn21.··································································7分又因为a1b12S1,所以b1a11.················································8分故分S11b1b2b11b1(b2b3)(b10b11)······························91(22242628210)51360.············································································10分解法二:(1)因为an12ann1,an1n12ann1n1所以2,·············································1分annann高三数学试题参考答案第1页(共15页)因为a11,所以a112,····························································2分所以数列{ann}是首项为2,公比为2的等比数列.···························3分nn所以ann2,即an2n.······················································4分(2)因为anbn2Sn,当n…2时,anSnSn12Sn,即SnSn1an.·······························5分所以Sn1Snan1,因此Sn1Sn1an1an.··································6分n1nn又an1an2(n1)(2n)21,n所以Sn1Sn121.··································································7分又因为a1b12S1,所以S1b11.················································8分所以S11(S11S9)(S9S7)(S7S5)(S5S3)(S3S1)S1··············9分(2101)(281)(261)(241)(221)11360.·········································································10分解法三:(1)同解法一.··················································································4分(2)因为anbn2Sn,当n…2时,an1bn12Sn1,所以anan1bnbn12(SnSn1),即bn1bnanan1.·················5分nn1n1n1又anan12n[2(n1)]21,所以bn1bn21,·······6分2n12n11所以b(b).····················································7分n32n132215又因为ab2S,所以ba1,b.···························8分1111113262n15所以数列{b}是首项为,公比为1的等比数列.n3262n1552n1因此b(1)n1,b(1)n1,··························9分n326n632nn5n1212n(1)n1这时ab25n1,Snn632(1)n1n22312242125111故S1360.·····················································10分1131224解法四:(1)同解法一.··················································································4分(2)因为anbn2Sn,高三数学试题参考答案第2页(共15页)当n…2时,anSnSn12Sn,n所以SnSn1an,即SnSn12n.········································5分2n1n12nn11所以S(S).···································7分n324n132422115又因为ab2S,所以ba1,S.····················8分111111324122n1n15所以数列{S}是首项为,公比为1的等比数列.n324122n1n1552n1n1因此S(1)n1,S(1)n1,·········9分n32412n123245212111故S1360.······················································10分111232418.(12分)在平面四边形ABCD中,ABC60,ADC120,点B,D在直线AC的两侧,AB1,BC2.(1)求BAC;(2)求△ABD与△ACD的面积之和的最大值.【命题意图】本小题主要考查解三角形、三角恒等变换等基础知识,考查推理论证、运算求解等能力,考查数形结合和化归与转化等思想,体现综合性与应用性,导向对发展直观想象、逻辑推理及数学运算等核心素养的关注.【试题解析】(1)在△ABC中,由余弦定理,得AC2AB2BC22ABBCcosABC.·······2分因为AB1,BC2,ABC60,1所以AC212222123,即AC3.···········································3分2所以BC2AC2AB2,·························································

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐