深圳高级中学2023届适应性考试数学答案

2023-11-26 · 17页 · 1.2 M

深圳高级中学(集团)2023届高考适应性考试数学试题答案一、单选题1.已知集合,,则集合等于(    )A.; B.; C.; D..【答案】D【详解】当时,;当时,;当时,,故,故,故选:D.2.在复平面内,复数满足,则(    )A. B. C. D.【答案】D【分析】由题意利用复数的运算法则整理计算即可求得最终结果.【详解】由题意可得:.故选:D.3.等差数列的首项为1,公差不为0,若成等比数列,则前6项的和为(    )A.    B.    C.3     D.8【答案】A【分析】设等差数列的公差,由成等比数列求出,代入可得答案.【详解】设等差数列的公差,∵等差数列的首项为1,成等比数列,∴,∴,且,,解得,∴前6项的和为.故选:A.4.在△ABC中,cosC=,AC=4,BC=3,则tanB=(    )A. B.2 C.4 D.8【答案】C【分析】先根据余弦定理求,再根据余弦定理求,最后根据同角三角函数关系求【详解】设故选:C5.已知一个直棱柱与一个斜棱柱的底面多边形全等,且它们的侧棱长也相等.若直棱柱的体积和侧面积分别为和,斜棱柱的体积和侧面积分别为和,则 A. B. C. D.与的大小关系无法确定【答案】A.【解析】设棱柱的底面周长为,底面面积为,侧棱长为,斜棱柱的高为,则,而,斜棱柱各侧面的高均不小于,所以,于是,有,所以,.6.已知向量,满足,,,则()A. B. C. D.【答案】D【分析】计算出、的值,利用平面向量数量积可计算出的值.【详解】,,,.,因此,.故选:D.7.6名同学参加数学和物理两项竞赛,每项竞赛至少有1名同学参加,每名同学限报其中一项,则两项竞赛参加人数相等的概率为(    )A. B. C. D.【答案】B【分析】利用古典概型即可求得两项竞赛参加人数相等的概率.【详解】记“两项竞赛参加人数相等”为事件A,则故选:B8.已知,,,其中为自然对数的底数,则,,的大小关系为 A. B. C. D.【答案】C.【解析】构造函数,得,,,.当时,,当时,,所以在上单调递减,上单调递增.易知,所以,所以.又,因为,所以,所以.所以.二、多选题9.若函数(,,)的部分图象如图,则(    )A.是以为周期的周期函数B.的图象向左平移个单位长度得到的图象对应的函数是奇函数C.在上单调递减D.的图象的对称中心为,【答案】AC【分析】首先根据函数图象得到,对于选项A,根据三角函数的周期性即可判断A正确,对选项B,向左平移后得到,不是奇函数,即可判断B错误,对选项C,根据,即可判断C正确,对选项D,根据的图象的对称中心为,即可判断D错误.【详解】由题图可知,因为当时,,所以.因为,所以,所以.由题图可知,所以,所以.由题图可知,当时,取得最大值,所以,,解得,.又,所以,所以.对于A,,则A正确.对于B,的图象向左平移个单位长度得到函数的图象,此函数不是奇函数,故B错误.对选项C,,则,所以在上单调递减,故C正确.对选项D,,,得,,所以的图象的对称中心为,,则D错误.故选:AC.10.已知点、是双曲线的左、右焦点,以线段为直径的圆与双曲线在第一象限的交点为,若,则(    )A.与双曲线的实轴长相等 B.的面积为C.双曲线的离心率为 D.直线是双曲线的一条渐近线【答案】BCD【分析】结合双曲线的定义和条件可得,然后,然后逐一判断即可.【详解】由双曲线的定义可得,因为,所以,故A错误;因为以线段为直径的圆与双曲线在第一象限的交点为,所以,所以的面积为,故B正确;由勾股定理得,即,所以,故C正确因为,所以,即所以双曲线的渐近线方程为:,即,即,故D正确故选:BCD11.对于函数和,设,若存在,使得,则称与互为“零点相邻函数”.若函数与互为“零点相邻函数”,则实数的值可以是(    )A. B. C. D.【答案】BC【分析】由题意,易得,进而得到,结合含参函数,转化为含参方程有解问题,求导,可得答案.【详解】由题意,可得,,易知,则,,则在有解,求导得:,令,解得,可得下表:极大值则当时,取得最大值为,,则的取值范围为,也即.故选:BCD.12.在四棱锥中,底面为矩形,,,,.下列说法正确的是A.设平面平面,则B.平面平面C.设点,点,则的最小值为D.在四棱锥的内部,存在与各个侧面和底面均相切的球【答案】AB.【解析】该四棱锥如图.A:设平面平面,因为平面,所以,所以A对;B:∵平面平面,∴平面,∴.又底面为矩形,所以,.因为,,即,所以.而,所以平面,平面平面,所以B对;C:由B选项可知的最短距离就是,所以C错;D:取、的中点,,则与平面、平面、平面都相切的球的半径即为的内切圆半径,同理与平面、平面、平面都相切的球的半径即为的内切圆半径,所以,所以D错.三、填空题13.已知数列满足,,则______.【答案】/【分析】算出数列的前五项,找到数列的周期为3,则本题即可解决.【详解】由,得.因为,所以,,,,…,所以是以3为周期的数列,则.故答案为:14.已知是奇函数,且当时,.若,则__________.【答案】-3【分析】当时,代入条件即可得解.【详解】因为是奇函数,且当时,.又因为,,所以,两边取以为底的对数得,所以,即.15.有3台车床加工同一型号的零件,第1台加工的次品率为8%,第2台加工的次品率为3%,第3台加工的次品率为2%,加工出来的零件混放在一起.已知第1,2,3台车床加工的零件数分别占总数的10%,40%,50%,从混放的零件中任取一个零件,如果该零件是次品,那么它是第3台车床加工出来的概率为.【详解】记事件:车床加工的零件为次品,记事件:第台车床加工的零件,则,,,,,,任取一个零件是次品的概率为如果该零件是次品,那么它是第3台车床加工出来的概率为,16.已知动点到抛物线的焦点的距离为1,则的轨迹方程是;若,是抛物线上的动点,则的最小值是.【答案】,4【解析】第二空解答:由题意可知,抛物线的焦点为.设点,则由抛物线的定义得,.要使最小,则应有,此时有.令,则,所以.因为,显然有,则由基本不等式知,当且仅当,即时等号成立.故的最小值为.四、解答题17.已知数列,的前n项和分别为,,且,,当时,满足.(1)求;(2)求.【答案】(1);(2).【分析】(1)由条件结合与的关系可求;(2)由递推关系证明为等比数列,由此可求的通项公式,再利用错位相减法求和.【详解】(1)因为,所以,当时,,又,当时,,所以,当时,,所以;(2)因为,所以,所以,又,所以数列为以为首项,公比为的等比数列,所以,所以,,所以,所以,所以,所以.18.如图,三棱柱中,侧面是矩形,,,D是AB的中点.(1)证明:;(2)若平面,E是上的动点,平面与平面夹角的余弦值为,求的值.【答案】(1)证明见解析(2)【分析】(1)先证明线面垂直,根据线面垂直得出线线垂直;(2)先设比值得出向量关系,根据空间向量法求已知二面角的值即可求出比值.【详解】(1)取BC的中点F,连接,,记,是AB的中点,,,,在矩形中,,,,,,,平面,平面,平面,平面,;(2)因为平面,,平面,所以,,由矩形得,以点为原点,,,所在的直线分别为轴,轴,轴,建立如图所示的空间直角坐标系.设,,则,,,,所以设是平面的一个法向量,则,令,则.设是平面的一个法向量,则,令,则,,.,或(舍去),.19.记的内角、、的对边分别为、、,已知.(1)求;(2)若点在边上,且,,求.【答案】(1)(2)【分析】(1)由余弦定理化简可得出,可求出的值,再结合角的取值范围可求得角的值;(2)求出、的值,设,则,分别在和中,利用正弦定理结合等式的性质可得出、的等式,即可求得的值,即为所求.【详解】(1)解:因为,由余弦定理可得,化简可得,由余弦定理可得,因为,所以,.(2)解:因为,则为锐角,所以,,因为,所以,,所以,,设,则,在和中,由正弦定理得,,因为,上面两个等式相除可得,得,即,所以,.20.锚定2060碳中和,中国能源演进“绿之道”,为响应绿色低碳发展的号召,某地在沙漠治理过程中,计划在沙漠试点区域四周种植红柳和梭梭树用于防风固沙,中间种植适合当地环境的特色经济作物,通过大量实验发现,单株经济作物幼苗的成活率为0.8,红柳幼苗和梭梭树幼苗成活的概率均为p,且已知任取三种幼苗各一株,其中至少有两株幼苗成活的概率不超过0.896.(1)当p最大时,经济作物幼苗的成活率也将提升至0.88,求此时三种幼苗均成活的概率();(2)正常情况下梭梭树幼苗栽种5年后,其树杆地径服从正态分布(单位:mm).㈠梭梭树幼苗栽种5年后,若任意抽取一棵梭梭树,则树杆地径小于235mm的概率约为多少?(精确到0.001)㈡为更好地监管梭梭树的生长情况,梭梭树幼苗栽种5年后,农林管理员随机抽取了10棵梭梭树,测得其树杆地径均小于235mm,农林管理员根据抽检结果,认为该地块土质对梭梭树的生长产生影响,计划整改地块并选择合适的肥料,试判断该农林管理员的判断是否合理?并说明理由.附:若随机变量Z服从正态分布,则,,.【答案】(1)0.5632(2)(1)0.001;(2)答案见解析【分析】(1)先求得红柳幼苗和梭梭树幼苗成活的概率的取值范围,再利用条件概率公式即可求得三种幼苗均成活的概率;(2)㈠利用正态分布的性质即可求得树杆地径小于235mm的概率;㈡答案不唯一,符合概率统计的原理,言之有理即可.【详解】(1)由题意得,任取三种幼苗各一株,至少有两株幼苗成活,包括恰有两株幼苗成活,三株幼苗均成活两种情况,故概率为,即,解得或(舍去)又,故p的取值范围为,故p的最大值为0.8,记红柳和梭梭树幼苗均成活为事件A,经济作物幼苗成活为事件B,则有,.故所求概率为.(2)㈠设正常情况下,任意抽取一株梭梭树,树杆地径为,由题意可知,因为,所以由正态分布的对称性及“”原则可知:.㈡理由①:农林管理员的判断是合理的.如果该地块土质对梭梭树的生长没有影响,由(1)可知,随机抽取10棵梭梭树,树杆地径都小于235mm的概率约为,为极小概率事件,几乎不可能发生,但这样的事件竟然发生了,所以有理由认为该地块对梭梭树的生长产生影响,即农林管理员的判断是合理的.理由②:农林管理员的判断是不合理的.由于是随机抽取了10棵梭梭树,所以不可控因素比较多,例如有可能这10颗树的幼苗栽培深度较浅,也有可能是自幼苗栽种后的浇水量或浇水频率不当所致.(答案不唯一,言之有理即可)21.如图,动点到两定点、构成,且,设动点的轨迹为.(1)求轨迹的方程;(2)设直线与轴交于点,与轨迹相交于点,且,求的取值范围.(1)3x2-y2-3=0(x>1);(2)【详解】(1)设的坐标为,显然有,且,当时,点的坐标为,当时,,由,有,即,化简可得,,而点也在曲线,综上可知,轨迹的方程为;(2)由,消去并整理,得,由题意,方程有两根且均在内.设f(x)=x2-4mx+m2+3,∴,解得,且,设,的坐标分别为,,由及方程有,,∴,由,且,得且,故的取值范围是.22.·(1)当时,求证:.(2)已知函数有唯一零点,求证:且.参考答案:(1)设 , ……1分在上单调递增 ,得,即. ……3分(2),得在单调递减,在单调递增.当时,,,,且,,单调递减,,,单调递增.为极小值点, ……5分若有唯一零点,则,即,即,将①代入②,得即,若,则,设,,当时,,在单调递增. ……7分,,由,得,等式两边取自然对数,得根据(1)中时, ,得 ……9分(另解:)先证明时, ……10分,得由得,,,设,且,得.综上 ……12分(另解1:,,)(另解2,得)

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐