精品解析:广东省汕头市2023届高三二模数学试题(原卷版)

2023-11-26 · 6页 · 484.3 K

2023年汕头市普通高考第二次模拟考试试题数学第Ⅰ卷选择题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,且,则的取值集合为()A. B. C. D.2.电脑调色板有红、绿、蓝三种基本颜色,每种颜色的色号均为.在电脑上绘画可以分别从三种颜色的色号中各选一个配成一种颜色,那么在电脑上可配成的颜色种数为()A. B.27 C. D.63.已知复数z满足,则z等于()A. B.C. D.4.在中,已知C=45°,,,则角B为()A30 B.60 C.30或150 D.60或1205.已知函数,则的大致图象为()A. B.C. D.6.已知,,,则有()A. B. C. D.7.已知,,是三个平面,,,,且,则下列结论正确的是()A.直线b与直线c可能是异面直线 B.直线a与直线c可能平行C.直线a,b,c必然交于一点(即三线共点) D.直线c与平面可能平行8.给出定义:设是函数的导函数,是函数的导函数.若方程有实数解,则称为函数的“拐点”.经研究发现所有的三次函数都有“拐点”,且该“拐点”也是函数的图象的对称中心.若函数,则()A. B. C. D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知曲线,,则下列结论正确的是()A.曲线C可能是圆,也可能是直线B.曲线C可能是焦点在轴上的椭圆C.当曲线C表示椭圆时,则越大,椭圆越圆D.当曲线C表示双曲线时,它的离心率有最小值,且最小值为10.在中,已知,,,BC,AC边上的两条中线AM,BN相交于点P,下列结论正确的是()A. B.C.的余弦值为 D.11.已知数列为为等差数列,,,前项和为.数列满足,则下列结论正确的是()A.数列的通项公式为B.数列递减数列C.数列是等差数列D.数列中任意三项不能构成等比数列12.已知圆台的上下底面的圆周都在半径为2的球面上,圆台的下底面过球心,上底面半径为,设圆台的体积为V,则下列选项中说法正确的是()A.当时,B.V存在最大值C.当r在区间内变化时,V逐渐减小D.当r区间内变化时,V先增大后减小第Ⅱ卷非选择题三、填空题:本题共4小题,每小题5分,共20分.13.与圆关于直线对称的圆的标准方程是______.14已知,则______.15.某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者,假设携带病毒的人占,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验,如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.按照这种化验方法,平均每个人需要化验______次.(结果保留四位有效数字)(,,).16.阿波罗尼奥斯在其著作《圆锥曲线论》中提出:过椭圆上任意一点的切线方程为.若已知△ABC内接于椭圆E:,且坐标原点O为△ABC的重心,过A,B,C分别作椭圆E的切线,切线分别相交于点D,E,F,则______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.车胎凹槽深度是影响汽车刹车的因素,汽车行驶会导致轮胎胎面磨损.某实验室通过试验测得行驶里程与某品牌轮胎凹槽深度的数据如下:行驶里程/万km0.000.641.291.932573.223.864.515.15轮胎凹槽深度/mm10.028.377.396.485.825.204.554.163.82以行驶里程为横坐标、轮胎凹槽深度为纵坐标作散点图,如图所示.(1)根据散点图,可认为散点集中在直线附近,由此判断行驶里程与轮胎凹槽深度线性相关,并计算得如下数据,请求出行驶里程与轮胎凹槽深度的相关系数(保留两位有效数字),并推断它们线性相关程度的强弱;2.576.20115.1029.46附:相关系数(2)通过散点图,也可认为散点集中在曲线附近,考虑使用对数回归模型,并求得经验回归方程及该模型的决定系数.已知(1)中的线性回归模型为,在同一坐标系作出这两个模型,据图直观回答:哪个模型的拟合效果更好?并用决定系数验证你的观察所得.附:线性回归模型中,决定系数等于相关系数的平方,即.18.已知函数.(1)求函数的定义域;(2)若,求函数的单调区间.19.如图,正方体中,直线平面,,.(1)设,,试在所给图中作出直线,使得,并说明理由;(2)设点A与(1)中所作直线确定平面.①求平面与平面ABCD的夹角的余弦值;②请在备用图中作出平面截正方体所得的截面,并写出作法.20.已知各项均为正数的数列满足:,且(1)设,求数列的通项公式(2)设,求,并确定最小正整数,使得为整数.21.如图,、为双曲线的左、右焦点,抛物线的顶点为坐标原点,焦点为,设与在第一象限的交点为,且,,为钝角.(1)求双曲线与抛物线的方程;(2)过作不垂直于轴的直线l,依次交的右支、于A、B、C、D四点,设M为AD中点,N为BC中点,试探究是否为定值.若是,求此定值;若不是,请说明理由.22.已知函数,,.(1)若函数存在极值点,且,其中,求证:;(2)用表示m,n中的最小值,记函数,,若函数有且仅有三个不同的零点,求实数a的取值范围.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐