贵州省名校协作体2023-2024学年高三上学期联考(一)数学参考答案

2023-11-27 · 6页 · 267.2 K

贵州省名校协作2023-2024学年高三联考(一)数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.题号12345678答案BDBCABBC8.C【解析】设事件A为“该球员投球得分”,事件B为“该球员投中3分球得分”,231423由全概率公式:P(A)P(B)P(A|B)P(B)P(A|B),故选:C343530二、多项选择题:本题共4小题,每小题5分,全部选对得5分,不分选对得2分,有错选的得0分,共20分。题号9101112答案ADACDABCCD12.CD【解析】当x0时,f(x)3x233(x1)(x1),所以当x(,1)时,f(x)单调递增;当x(1,0]时,f(x)单调递减;又当x(0,)时,f(x)单调递增,所以f(x)的图像大致如下:对于A选项,方程f(x)1有三个不相等的根,A错误;对于B选项,方程f(x)m的根等价于函数f(x)的图像与ym的交点的横坐标,根据图像知实数m的取值范围是0,13,故B错误;对于选项,令,方程的根为,而Cf(x)tf(t)1t13,t20,t3e1f(x)3有一个根,f(x)0有一个根,f(x)e1有三个根,且这五个根互不相等,所以C正确;对于选项,令,则方程22的根为,,因为方程Df(x)tt2ata10t1a1t2a1[f(x)]22af(x)a210有四个不相等的实数根,结合f(x)的图像知a13a131a130a11或或或,1a130a11a100a11解得a[0,1](2,4),故D正确,故选CD.数学答案第1页共6页{#{QQABIQCAogAgAAIAABhCQwXQCgMQkAEACKoOxAAEIAAAAANABCA=}#}三、填空题:本题共4小题,每小题5分,共20分。题号131415161答案25224.【解析】当为奇数时,;当时为偶数时,16nan2an3n1nan2an3n1.设数列的前项和,{an}nSn则,S16a1a2a3a4...a16,a1a3a5...a15(a2a4)...(a14a16)a1(a12)(a110)(a124)(a144)(a170)(a1102)(a1140)(5172941),8a1392928a148448611则a.故答案为.144四、解答题:本题共6小题,其中17题10分,18-22题每题12分,共70分。17.【解析】(1)根据统计图表中的数据,结合平均数的计算方法,可得本次统考中数学考试成绩样本的平均数为x600.02800.221000.531200.21400.03100................2分2s216000.024000.2200.534000.216000.03248............................5分(2)由(1)可知X~N(100,15.752)....................................................................................................6分0.95440.6826所以P(84.25X131.5)0.8185.....................................................................9分2因为0.81850.8,所以本次考试试题的有效性符合要求........................................................................10分.【解析】()由分181S3S9a4a5a6a7a8a90a6a70.................................2则分a12a111....................................................................................................................................3设的公差为,则{an}da111d111111d11d2则ana1(n1)d112(n1)2n13所以数列的通项公式为分{an}an2n13.............................................................................................5()由题可知2T100a1a2a6a7a100分T100a1a2a6a7a100.................................................................................................7T100S6S100S62S6S1002611110011187...................................................................................................10分228872数学答案第2页共6页{#{QQABIQCAogAgAAIAABhCQwXQCgMQkAEACKoOxAAEIAAAAANABCA=}#}分T1008872..........................................................................................................................................12319.【解析】(1)因为△ABC的面积为,213所以bcsinA,即bcsinA3,...............................................................................................1分22因为ABAC1,所以bccosA1,...............................................................................................3分bcsinA所以3,得tanA3,bccosA因为A0,,所以A..................................................................................................................5分23π2π(2)结合(1)可得A,BCπA,33abc由a3,则根据正弦定理有2,得b2sinB,c2sinC,............................7分sinAsinBsinC根据余弦定理有a2b2c22bccosA,得b2c23bc,222π所以bc3bc34sinBsinC34sinBsinB.......................................................9分32π323sinBcosB2sinB43sin2Bcos2B42sin2B,6π2ππππ又VABC为锐角三角形,则有B0,,B0,,得B,,23262ππ5ππ1所以2B,,所以sin2B,1,..................................................................11分6666222π故bc42sin2B5,6................................................................................................12分620.【解析】法一:(1)过E作EH//BC交PC与H,连接DH因为ABCD是长方形,AD//BC,所以AD//EH,所以ADHE四点共面PC平面ADE,所以PCDH,又因为PDDC,所以H为PC的中点又EH//BC,所以E为PB中点,所以PEBE.............................................................6分(2)令PDDC1,则AD2,因为PD平面ABCD,所以PDAD,因为ADDC,PDDCD,所以AD平面PDC,所以ADDH,所以PDH为二面角PADE的平面角在RtPDB中DBAD2DC23,PBBD2PD22数学答案第3页共6页{#{QQABIQCAogAgAAIAABhCQwXQCgMQkAEACKoOxAAEIAAAAANABCA=}#}3因为DEPB,所以DEPBPDDB,所以DE,所以PE:EB1:3又EH//BC,2所以PH:HC1:3,在RtPDC,PC22则PH,PD1,DPH450,45在PDH中,由余弦定理DH2PD2PH22PDPHcos4508PD2DH2PH2310cosPDH2PDDH10310所以二面角PADE的余弦值为..................................................................12分10法二(1)因为PD平面ABCD,ABCD是长方形,建立如图所示的空间直角坐标系令PDDC1,ADm,则D(0,0,0),A(m,0,0),C(0,1,0),B(m,1,0)zP(0,0,1),令PEPB因为PC平面ADE,所以PCDE,PC(0,1,1),HDEDP+PEDPPB(0,0,1)(m,1,1)(m,,1)1yPCDE10,所以,所以E为PB中点,所以PEEH2x......................................................................................................................6分(2)因为AD2DC2,所以A(2,0,0)B(2,1,0)P(0,0,1),1DE(2,,1),PB(2,1,1),所以DEPB210,4213所以DA(2,0,0),DE(,,),令n(x,y,z)是平面ADE的法向量,444DAn2x0,x0令,所以213z1,y3n(0,3,1)DEnxyz0y3z444又因为平面PAD的法向量m(0,1,0)|3|310设二面角PADE为,则二面角cos|cosn,m|11010310所以二面角PADE的余弦值为.........

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐