!#$%&'2023-2024$()*+,-%./01.23456,、789!1234567891011#$DCDCCCDACBDACAB1.$】D【%&】 A.'()*12+,-./0()*1234,53667,A89;B.:;<=>?@A363B<.CDEFGHIJ,GHKLMN,B89;C.OPQ>RST,<=>?UVWTL2,5XYZ@A,C89;D.B<=>?[\]@A3,1V^T_Z`abP0c,1HDP89,dD。2.$】C【%&】 A、B、C.efg/_hijk.,jlmno/pmqrsPtuYefg.34,vw2T36x,yz{?|.M}tY~0.25m,|tfY~,z{.M}PY;D.
Y?,{GHL5Y?.,“”?Y~“”?,P.;GH?,Z`,D,1HdC。3.$】D【%】 A. ¡¢£G¤,t13¥,¦§mZ`5¨b©C,ªZ`P/©C,«A;B.¦§0¬@A,®t23¥¦§mZ`¯b,1Ho=bmZ,Z`)t13¥Z`°C,«B;CD. ¡,±¦²¦§.³´T5F,µb58ab,¢¶·¸¹º»¼mg-F=maG½F=mg-maG¤,¾¦§¿¼bÀ.©CmZ`3,¦²¦§.L2T©C,Á¦VÂ.qT©C,¢£G¤,t43¥,¦§¿¼bÀ.©CmZ`,Át43¥¦V.qT©C,«D89,t33¥,¦§¿¼bÀ.mZ`,¦§ÃÄÅW,1H¦VÂ.qT)¦§WTC,C。«dD。4.$】C【%&】 A.Æ=>?[Ç¢ÈÉ@A,WT.Ê}IG=mgt,Ë_36~8),¢Ç¢ÈÉÌ»h=12hgt2G¤,I=mgt=mg=m2gh,1HA2G槡g槡hBC.Æ=>?[Ç¢ÈÉ@A,ÍÎ`h,ÏÐÑZ`v=2gh,=>?23t=,=Ð?Ò5V槡1v/2dÐL2TFPY3GHKLXÓZ@AÍd,Ð?23t=,wÔÕÆ@}ºÖ¼mg(t+2v/21h+dt)-Ft=0,×½F=mg,1HBdØ?,ÏÐÙÚ89.ÛÜ,ÆVÂÐ.ÝÞL2TßW22dT.6à,Á3600N,CdØÏÐÙÚP893,ÆVÂÐ.ÝÞL2Tß5WT.16à,Á9600N,1HC89,B;D.ÆwÔ§áPâã,1HD。—1—{#{QQABLYwEgggIAAIAARhCAQFQCEOQkAEACAgGhBAMsAIByQFABAA=}#}书5.$】C【%】 A.j]äåæçè/éwåêëìÖ,¾íwVå]î.êé}ïðY3,Vå]îtñðëåAÚ,¼òëåó,Õôåõö÷äå,øùú/éåû]=êü?VTïù,ýþìÖPÿ,1HA;B.!=#$m%0&'(),&'()tñð*ó,+,},ÿ3-.êü,/Vå]îj0ñðëåó,B;C.1å]îU¼2Â3óå4À,ñðY.êü,/Vå]îñðëåó²ôåõäå,C89;D.Á/]î5Åû56L,ª=78wÔ?¯9t¼}+:)!;ê,1H<=PG>100%,D。«dC。6.$】C【%&】 A.¢Nå?åü_åÚ+@AN,B、DýNÂA′N.BC_B′、D′ýNÂA.BCPÿ,1HB、D、B′、D′P=ÿ0DÚEÀ,1HA;B.A′、B、DFN.åür`CDGD,abPÿ,1HB;C.CNåÚHD′åÚGD,BHA′N.åÚGD,UCB=UD′A′,1H+qIJå?CNKAÂBN,H0-qIJå?A′NKÂÂD′åüT[LGÿ,C89;D.UCA≠UC′A′,1HD。7.$】DGMm【%&】 A.¢=maG¤,>6M=NON_PON.mZ`Q)5342∶332,1HA;(R+h)2GMm2π22×6400+200+400B.¢NORS2=m()R=mg,¢TUV¸Fº»W>6Me4Xa=km=RTN2R3a31d6700km,2=2,%½T>≈90+,,0Y36Z,>6M[wTN≈=16\,1H>6MZ]TNT>90minY^GHKÂß16\_`,1HB;C.abmZc>wÔ?,]Y^CO.4—2—{#{QQABLYwEgggIAAIAARhCAQFQCEOQkAEACAgGhBAMsAIByQFABAA=}#}223πL/0HO5、e52r.,1HES=π(2r)=,1HA;4mv43mvB.kr=,1Hêër`B=槡,B89;Bq3qL2mvC.Oêër`5,®s=êü?@A.e5L/2,!£(9-D)?①¢ÄiqL/08E,1HstE.À`,PÂAN,1HC;mvD.s.!£(9-D)?②1,±s.@Ae5r′,®¼r′=,¢k½r′+B′qr′(23+3)mv=L,%½B′=槡,1HD89;cos30°3qL10.$】AC【%】 A.ÕYqú.2a+&G¤,5åqëú,5åóëú,1HdØA89;B.¢YqúG¤U2=200×220V=44000V¢YqúG¤I2=5×20A=100A,®U3=U2-I2r=42000V420002.åqU=V=210V,dØB;42002I2r1C.8å]À+,.L=ß8åL=.η==≈4.5%,dØC89;U2I222D.O22Ï.2å± Yz,ÍqYqú\¡åSÓD,\¡åóYC,8å]À.åóYC,®åógyYC,dØD。«dAC。11.$】AB【%&】 A.OUT¢)À£.LED¢¤,®¥]éw¦§xtb¨©,Á5N¥¢,1HA89;B.Oïª./«¥,¬=¦§\EÃïð®ª!£(11-D1),θ=45°,k5¦§¬PDÄC¢COEÎ`,1HGH¢KLMN,©N.BC.¥]!£(11-D2)1¥],©N.¥]C#¢ÐÝBCLPQ=80cm,C¢.BC©N5LDQ=80槡2cm,1HB89;C.!£(11-D1)TP¥¢3bÀHb¥]©Cj¯5α=2θ=90°1HC;D.Oïª./°¥,®¦§Õ±¥©ª=©C,1HOE²³´.OaC#©N.¥5±¥,1HD。—3—{#{QQABLYwEgggIAAIAARhCAQFQCEOQkAEACAgGhBAMsAIByQFABAA=}#}12.$】(1)4.73s(2+) 5.59m(2+)L$(1)¢ ¡½,¾OWTmZ`g=9.86m/s2,'¶·g¸T=2π,¹2¦§.ê槡gTQº}'¶·g,»¾ê¼C¦§©N3,êër`©C,1H£(11-2)G¤,A、BýN6¼26.0155.5·g,1H·gT=s=4.73s5.5T2g(2)¹2'¶¸YEL==5.5932m≈5.59m4π213.$】(1)b (2+) D(2+) (2)£½!(2+);(3)R3=2.0Ω(2+) d(2+);$(1)5¾¿å?åóÀC+ÁåógHå4,1HË=Â^S1ÑR1ÂÃCÄÅÆ,1Hdb;D|/2./D<ÇÈ.Éʺ}nËåS.SÄ,Ì5ÍÎÏ,1HR2d20~9999.9Ω.“D”åSÐ。(2)£½!:(3)¢ ¡G¤`dÎ,RT.SÄdD,éwå.åódC,ýÑÅ?.`©CÄ+ÒÕ40℃H100℃,ÕSÄ+Ò51kΩH200Ω,Õåó+Ò53mAH15mA,1H,ÓÔn¼åógu%~¿¼ý}Ô.åóg。S4bc35C}Ô0~15mAÑ,Õ`50~100℃,y3IgR3IgR3+R4¼=,ÿÖS4bd3¼=,ÈÏy½R3=2.00Ω,R4=8.00Ω,º}Igc-IgRg+R4Igd-IgRgÆÉÉËTkS4bdÅÆ°Õ9。14.$】177℃【%&】 RÖZ×Â.RÉ5:;ÕØ:—4—{#{QQABLYwEgggIAAIAARhCAQFQCEOQkAEACAgGhBAMsAIByQFABAA=}FÙ1:P1=P0V1=LS T1=273+t(2+)2mg20FÙ2:P=P-=P(3+)20S2709V=LS T=(273+27)K=300K(2+)2102PVPV¢ÖÊRÉFÙaÔ11=22(3+)T1T2t=177℃(2+)(¹2Úxa0%#89.ÿÛ²+)15.$】(1)2N(2+) (2)2m/s(6+) (2)2J(6+)。【%&】 (1)ÕûÉ[ÜVT+&ݽ@A1V³´TFN=mgcosθÞAßàTf=μFN(1+)áâG½:f=μmgcosθ=2N(1+)(2)ûÉ[Üãêë]@A,ñðëåAÚ,G¾Ä0å4,R1、R25hå,äR1、R25ák,¾åL>©CZ`vm3¼:ûÉñð.ëåAÚ5Em=BLvm(1+)Emå?ñð.ëåóIm=(1+)RR1R2Õå+&G¤R=(1+)R1+R2ûÉ1VæçTF=BImL(1+)Z`©C3,mZ`50,¼F+f=mgsinθ(1+)áâHÀaÔ,%½vm=2m/s(1+)(3)è¿éêÂ>©CZ`wÔ?,ë±t3Z`5v,Õûɼ:ûÉñðëåAÚE=BLvEå?ñðëåóI=RR1R2Õå+&G¤R=R1+R2ûÉ1VæçTF=BILûÉmZ`mgsinθ-f-F=ma(1+)B2L2Õ36ìQ¼(mgsinθ-f)t-(R1+R2)x=mvmR1R2%½,ywÔûÉíûÞx=4m(2+)1}âã¼mgxsinθ=mv2+fx+Q(2+)2mR1、R2ýSÄýåq3¥GD,1HåSR1Àñðn}Q1¼:R2Q1=Q=2J(1+)R1+R2—5—{#{QQABLYwEgggIAAIAARhCAQFQCEOQkAEACAgGhBAMsAIByQFABAA=}#}(¹2Úxa0%#89.ÿÛ²+,¸1î½2+,¸2î½6+,¸3î½6+)mEk09x3-5x116.$】(1) (2)k= (3)ΔEp=Ek0。2(x2-x1)x16x11【%&】 (1)A_BïvÑu6A.A5E=mv2k020ïvÑxA、BðZTPCÄhT,A}âã,¼mv0=(m+mB)v1(2+)41¢£G¤,Ú?AïvxAE=mv2,9k0211%½m=m(2+)B2(2)ë±ïvÑBÉ/ñòqóòx0,ôEõ¯5θ,¼:kx0=mBgsinθ(1+)AKAÂx2ÿ¼©C.A,1HmZ`50,ÕABÉ+&G¤k(x2-x1+x0)=(m+mB)gsinθ(1+)AKAÂx1.wÔ?,¢AºÖ½:mgx1sinθ=Ek0(2+)EáâG½k=k0;(2+)(x2-x1)x1(3)x1~x3.wÔ?,AHBíôEKABC5(x3-x1),ämgx1sinθ=Ek0AHBÓö.WTÚΔEpG=(m+mB)g(x3-x1)sinθ(1+)1AHBÓD.A5ΔE=(m+m)v2(1+)K2B1x1~x3.wÔ?,A、BHñòð§áâã,pm.ñ÷Ú,¼1ΔE=(m+m)g(x-x)sinθ+(m+m)v2,(2+)pB312B1