高考数学专题18 圆锥曲线与外心问题-高考数学圆锥曲线重难点专题突破(全国通用)(原卷版)

2023-11-18 · 6页 · 329.8 K

专题18圆锥曲线外心问题一、单选题1.已知点,是椭圆的左、右焦点,点是这个椭圆上位于轴上方的点,点是的外心,若存在实数,使得,则当的面积为8时,的最小值为A.4 B. C. D.2.设为双曲线的右焦点,以为圆心,为半径的圆与双曲线在第一象限的交点为,线段的中点为,的外心为,且满足,则双曲线的离心率为()A. B. C.2 D.3.已知坐标平面中,点,分别为双曲线()的左、右焦点,点在双曲线的左支上,与双曲线的一条渐近线交于点,且为的中点,点为的外心,若、、三点共线,则双曲线的离心率为()A. B.3 C. D.54.已知是双曲线的左、右焦点,过点且垂直于实轴的直线与双曲线的两条渐近线分别相交于A,B两点,则坐标原点O可能为的()A.垂心 B.内心 C.外心 D.重心5.在直角坐标系xOy中,F1(-c,0),F2(c,0)分别是双曲线C:的左、右焦点,位于第一象限上的点P(x0,y0)是双曲线C上的一点,△PF1F2的外心M的坐标为,△PF1F2的面积为2a2,则双曲线C的渐近线方程为()A.y=±x B.y=x C.y=x D.y=±x二、填空题6.已知点分别为双曲线的左、右焦点,点A,B在C的右支上,且点恰好为的外心,若,则C的离心率为__________.7.已知椭圆和双曲线其中若两者图像在第二象限的交点为A,椭圆的左右焦点分别为B、C,T为△ABC的外心,则的值为_____.8.已知点,是椭圆的左、右焦点,点是这个椭圆上位于轴上方的点,点是的外心,若存在实数,使得,则当的面积为8时,的最小值为__________.9.已知斜率为1的直线与抛物线交于两点,若的外心为为坐标原点),则当最大时,=____.10.已知的三个顶点均在抛物线上,给出下列命题:①若直线过点,则存在使抛物线的焦点恰为的重心;②若直线过点,则存在点使为直角三角形;③存在,使抛物线的焦点恰为的外心;④若边的中线轴,,则的面积为.其中正确的序号为______________.三、解答题11.在直角坐标系xOy中直线与抛物线C:交于A,B两点,且.求C的方程;若D为直线外一点,且的外心M在C上,求M的坐标.12.已知椭圆的左右焦点分别是,是椭圆上一动点(与左右顶点不重合),已知的内切圆半径的最大值是椭圆的离心率是.(1)求椭圆的方程;(2)过作斜率不为0的直线交椭圆于两点,过作垂直于轴的直线交椭圆于另一点,连接,设的外心为,求证:为定值.13.设椭圆的右焦点为,过的直线与相交于两点.(1)若,求的方程;(2)设过点作轴的垂线交于另一点,若是的外心,证明:为定值.14.在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.(1)求椭圆的方程;(2)设经过点的直线交椭圆于,两点,点.①若对任意直线总存在点,使得,求实数的取值范围;②设点为椭圆的左焦点,若点为的外心,求实数的值.15.已知坐标原点为,双曲线的焦点到其渐近线的距离为,离心率为.(Ⅰ)求双曲线的方程;(Ⅱ)设过双曲线上动点的直线分别交双曲线的两条渐近线于,两点,求的外心的轨迹方程.16.已知动圆过点且与直线相切,圆心的轨迹为曲线.(1)求曲线的方程;(2)若,是曲线上的两个点且直线过的外心,其中为坐标原点,求证:直线过定点.17.已知抛物线C:,点P为y轴左侧一点,A,B为抛物线C上两点,当直线过抛物线C焦点F且垂直于x轴时,面积为2.(1)求抛物线C标准方程;(2)若直线为抛物线C的两条切线,设的外心为M(点M不与焦点F重合),求的所有可能取值.18.在平面直角坐标系中,已知圆:,点,,点在圆上,.(1)求圆的方程;(2)直线与圆交于,两点(点在轴上方),点是抛物线上的动点,点为的外心,求线段长度的最大值,并求出当线段长度最大时,外接圆的标准方程.19.已知抛物线的焦点为F,准线为,过焦点F的直线交抛物线E于A、B.(1)若垂直l于点,且,求AF的长;(2)O为坐标原点,求的外心C的轨迹方程.20.已知抛物线,焦点为F,过外一点Q(不在x轴上),作的两条切线,切点分别为A,B,直线QA,QB分别交y轴于C,D两点,记的外心为M,的外心为T.(1)若,求线段CF的长度;(2)当点Q在曲线上运动时,求的最大值.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐