八年级上学期期中数学试题一、选择题(本题有10个小题,每小题3分,共30分)1.在下列各电视台的台标图案中,是轴对称图形的是()A. B. C. D.2.下列线段能构成三角形的是( )A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,63.如图,过△ABC顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.4.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于( )A.70° B.80° C.90° D.100°5.一个多边形的内角和与外角和相等,它是()边形.A.三 B.四 C.五 D.六6.如图,若△ABC≌△DEF,则∠E为()A.30° B.70° C.80° D.100°7.如图,将△ABC沿AC对折,点B与点E重合,则全等的三角形有()A.4对 B.3对 C.2对 D.1对8.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为( )A.3 B.4 C.6 D.89.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC-BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=3AD,其中正确的个数有()A.4个 B.3个 C.2个 D.1个10.平面直角坐标系中,已知点A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.3 B.4 C.5 D.6二、填空题(本题有6个小题,每小题3分,共18分)11.已知点P(-2,3),关于x轴对称的点的坐标为__________.12.若正多边形的每一个内角为,则这个正多边形的边数是__________.13.等腰三角形一腰上高与另一腰的夹角为,则该等腰三角形的底角的度数为______.14.如图,点B在∠DAC的平分线AE上,请添加一个适当的条件:,使△ABD≌△ABC.(只填一个即可)15.如图,∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,CB=8,则点M到BC的距离_______.16.四边形ABCD中,∠B=∠D=90°,∠C=72°,在BC、CD上分别找一点M、N,使△AMN的周长最小时,∠AMN+∠ANM的度数为_______三、解答题(本题有8个小题,共72分)17.如图,已知点B、E、C、F在同一条直线上,AB∥DE,AC∥DF,BE=CF.求证:AC=DF.18.如图,AC⊥CB,DB⊥CB,垂足分别为C,B,AB,CD相交于点O,AB=DC.求证:OB=OC.19.已知,如图△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC.并求∠B的度数.20.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于E,DF⊥AC于F.求证:AD⊥EF.21.如图,在平面直角坐标系中(1)做出△ABC关于y轴对称的,并求出三个顶点的坐标;(2)计算△ABC的面积;(3)x轴上画点P,使PA+PC最小.22.如图,△ABC等边三角形,点D,E分别在边BC,AC上,且AE=CD,AD与BE相交于点F.(1)求∠BFD的度数;(2)作出AD的垂线段BH,若EF=2,FH=4,求出AD的长度.23.如图,在△ABC中,∠BAC=60°,∠C=40°,P,Q分别在BC,CA上,AP,BQ分别是∠BAC,∠ABC的角平分线.求证:BQ+AQ=AB+BP.24.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;并用含α的式子表示∠AMB的度数;(2)当α=90°时,取AD,BE中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ的形状,并加以证明.八年级上学期期中数学试题(解析卷)一、选择题(本题有10个小题,每小题3分,共30分)1.在下列各电视台的台标图案中,是轴对称图形的是()A. B. C. D.【答案】C【解析】试题分析:关于某条直线对称的图形叫轴对称图形.只有C沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形考点:轴对称图形.2.下列线段能构成三角形的是( )A.2,2,4 B.3,4,5 C.1,2,3 D.2,3,6【答案】B【解析】试题分析:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.考点:三角形三边关系.3.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.【答案】A【解析】【分析】经过一个顶点作对边所在的直线的垂线段,叫做三角形的高,根据概念即可得出.【详解】根据定义可得A是作BC边上的高,C是作AB边上的高,D是作AC边上的高.故选A.考点:三角形高线的作法4.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于( )A.70° B.80° C.90° D.100°【答案】C【解析】【详解】解:根据平行线的性质得到∠1=∠B=50°,由三角形的内角和定理可得∠E=180°﹣∠B﹣∠1=90°,故选C.【点睛】本题考查平行线的性质.5.一个多边形的内角和与外角和相等,它是()边形.A.三 B.四 C.五 D.六【答案】B【解析】【分析】设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【详解】设多边形的边数为n,根据题意列方程得,(n-2)•180°=360°,n-2=2,n=4.故选:B.【点睛】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.6.如图,若△ABC≌△DEF,则∠E为()A.30° B.70° C.80° D.100°【答案】C【解析】【分析】根据全等三角形的性质求出∠D、∠F,根据三角形内角和定理求出即可.【详解】∵△ABC≌△DEF,∠A=70°,∠C=30°,∴∠D=∠A=70°,∠F=∠C=30°,∠E=∠B,∴∠E=180°-∠D-∠F=80°,故选:C.【点睛】本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.7.如图,将△ABC沿AC对折,点B与点E重合,则全等的三角形有()A.4对 B.3对 C.2对 D.1对【答案】B【解析】【分析】根据全等三角形的判定解答即可.【详解】将△ABC沿AC对折,点B与点E重合,则全等的三角形有△ABD≌△AED,△ABC≌△AEC,△BDC≌△EDC,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定方法:SSS、SAS、AAS、ASA、HL.8.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和△BC′F的周长之和为( )A.3 B.4 C.6 D.8【答案】C【解析】试题分析:由折叠特性可得CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,推出∠ABE=∠C′BF,所以△BAE≌△BC′F,根据△ABE和△BC′F的周长=2△ABE的周长求解.解:将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选C.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,折叠前后图形的形状和大小不变,如本题中折叠前后角边相等.9.如图,在△ABC中,∠BAC=90°,∠ABC=2∠C,BE平分∠ABC交AC于E,AD⊥BE于D,下列结论:①AC-BE=AE;②点E在线段BC的垂直平分线上;③∠DAE=∠C;④BC=3AD,其中正确的个数有()A.4个 B.3个 C.2个 D.1个【答案】B【解析】【分析】根据三角形内角和定理、线段垂直平分线的判定定理、直角三角形的性质判断即可.【详解】∵∴∵BE平分∴∴∴∴,则①正确∵∴点E在线段BC的垂直平分线上,则②正确∵∴∵∴∴,则③正确∵∴,则④错误综上,正确的个数为3个故选:B.【点睛】本题主要考查了线段的垂直平分线的判定、三角形内角和定理、直角三角形的性质,掌握相关的判定定理和性质定理是解题关键.10.平面直角坐标系中,已知点A(2,2),B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.3 B.4 C.5 D.6【答案】C【解析】【分析】由点A、B的坐标可得到,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【详解】∵点A、B的坐标分别为(2,2)、B(4,0).∴,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选:C.【点睛】本题主考查了等腰三角形的判定以及分类讨论思想的运用,分三种情况分别讨论,注意等腰三角形顶角的顶点在底边的垂直平分线上.二、填空题(本题有6个小题,每小题3分,共18分)11.已知点P(-2,3),关于x轴对称的点的坐标为__________.【答案】【解析】【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】点P(-2,3)关于x轴对称的点的坐标为(-2,-3).故答案为:.【点睛】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.12.若正多边形的每一个内角为,则这个正多边形的边数是__________.【答案】八(或8)【解析】分析:根据正多边形的每一个内角为,求出正多边形的每一个外角,根据多边形的外角和,即可求出正多边形的边数.详解:根据正多边形的每一个内角为,正多边形的每一个外角为:多边形边数为:故答案为八.点睛:考查多边形的外角和,掌握多边形的外角和是解题的关键.13.等腰三角形一腰上的高与另一腰的夹角为,则该等腰三角形的底角的度数为______.【答案】69°或21°【解析】分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°−48°=42°,∵AB=AC,∴∠ABC=∠C=(180°−42°)=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°−48°=42°,∴∠BAC=180°−42°=138°,∵AB=AC,∴∠ABC=∠C=(180°−138°)=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为69°或21°.14.如图,点B在∠DAC的平分线AE上,请添加一个适当的条件:,使△ABD≌△ABC.(只填一个即可)【答案】∠C=∠D或∠CBA=∠DBA或∠CBE=∠DBE或AC=AD(只填一个即可)【解析】已知已经有一对角和一条公共边,所以再找一对边或一对角就可以得到两三角形全等解:已经有∠CAB=∠DAB,AB=AB,再添加AC=AD,利用SAS证明;或添加∠ABC=∠ABD,利用AS
09 【人教版】八年级上期中数学试卷(含答案)
2023-12-20
·
24页
·
1.2 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片