中学生标准学术能力诊断性测试2024年1月测试二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分,部分选对但不全得2分,有错选的得0分.数学试卷9.设,,为互不重合的平面,mn,为互不重合的直线,则下列命题为真命题的是本试卷共分,考试时间分钟。150120A.若,,则B.若=⊥mm,,则⊥⊥,一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是C.若mnmn,,,则D.若⊥⊥,,则x2符合题目要求的.10.已知点P为双曲线Cy:1−=2上的任意一点,过点作渐近线的垂线,垂足分别为EF,,41.已知mR,集合AmBaaA=−=,1,2,2,若CA=B,且C的所有元素和为12,则454则m=A.PEPF+=B.PEP=F55128A.B.0C.1D.2−3C.PEPF=−D.SPEF的最大值为2525.已知数列a满足n,则222naaaa111=−=1,2annnn++an=11.直线laxbyc1:0++=和lbxcya2:0++=将圆Cxy:111(−+−=)()分成长度相等的四段2121222....弧,则(abc−+−+−111)()()的取值可以是An−1Bn−1CnDn21+221+21−48A.B.2C.D.33.复数z满足(z+=−2i1i)(i为虚数单位),则的共轭复数的虚部是33A.−3B.1C.D.−i12.已知sin2sin+=+22sin22(),且+kkZ,则tan2tan+++()3tan的值可能为4.在直三棱柱ABC−A1BC11中,所有棱长均为1,则点A1到平面AB1C的距离为A.B.C.D.821102110−6−552A.B.C.D.7564三、填空题:本题共4小题,每小题5分,共20分.n2n5.设(12+=++++xaa)xaxax,若aa56=,则n=012n13.设函数fx()的定义域为R,为偶函数,fx(+−21)为奇函数,当x2,4时,fx()=A.6B.7C.8D.9a+log2xb,若ff(064)+=(),则ab+=2.6.若不等式xxxx22−+458174+−+的解集为ab,,则ab+的值是xy2214.已知FF12,是椭圆C:+=1(ab0)的左、右焦点,P是C上一点,线段PF2的中垂ab22A.5B.42C.6D.79线l过点F,与椭圆相交于AB,两点,且AB=a,则椭圆C的离心率为.312e57.已知a=e,b=ln2,c=15−5ln5,则x215.已知函数gx()的图象与函数fxx()=−e的图象关于原点对称,动直线xaa=(0)与函数A.abcB.bcaC.acbD.bacfxgx(),()的图象分别交于点,函数fx()的图象在A处的切线l与函数gx()的图象133118.已知x,y0,x+y−x−y=3,则13xy+的最大值是在B处的切线l相交于点,则ABC面积的最小值是.4422222A.15B.18C.20D.2416.对任意的xR,不等式(x−7x+14)m(x−6x+13)(x−8x+17)恒成立,则实数m的取值范围为.第1页共4页第2页共4页{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.20.(12分)如图所示,已知ABC是以BC为斜边的等腰直角三角形,点M是边AB的中点,点2117.(10分)数列an的前n项和为San,11=,当n2时,Sn=−anSn.N在边BC上,且BN=3NC.以MN为折痕将BMN折起,使点B到达点D的位置,且平面21DMC⊥平面ABC,连接DA,DC.(1)求证:数列是等差数列,并求Sn的表达式;SnnS2(2)设b=n,数列b的前n项和为T,不等式Tmm−n+23对所有的nN*恒成n21n+nnn立,求正整数m的最小值.118.(12分)如图所示,在ABC中,ABD=1,是BC上的点,=BADDAC.2(第20题图)(1)若E是线段DM的中点,求证:NE平面DAC;(2)求二面角DACB−−的余弦值.21.(12分)如图所示,已知抛物线yxM=−21,0,1(),A,B是抛物线与x轴的交点,过点M作(第18题图)斜率不为零的直线l与抛物线交于C,D两点,与x轴交于点Q,直线AC与直线BD交于点P.21(1)若=BAC,求证:−=3;2ADAC1(2)若BDDC=,求ABC面积的最大值.419.(12分)如图所示,一只蚂蚁从正方体ABCDA−BC1111D的顶点A1出发沿棱爬行,记蚂蚁从一个顶点到另一个顶点为一次爬行,每次爬行的方向是随机的,蚂蚁沿正方体上、下底面上的棱爬12行的概率为,沿正方体的侧棱爬行的概率为.(第21题图)63CMDM(1)求的取值范围;CD(2)问在平面内是否存在一定点T,使得TPTQ为定值?若存在,求出点T的坐标;若不存在,请说明理由.21ln−x22.(12分)已知函数fxxa()=+−有两个零点x1,x2(x1x2).x(1)求实数a的取值范围;(第19题图)(2)求证:xx1;(1)若蚂蚁爬行n次,求蚂蚁在下底面顶点的概率;12222(3)求证:x2−x1a−4x2−x1.(2)若蚂蚁爬行5次,记它在顶点C出现的次数为X,求X的分布列与数学期望.第3页共4页第4页共4页{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}中学生标准学术能力诊断性测试2024年1月测试数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.12345678ADBACCAC二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对但不全的得2分,有错选的得0分.9101112ABBCDCDACD三、填空题:本题共4小题,每小题5分,共20分.5.14.134131.,15.216−2四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)21(1)当n2时,数列an的前n项和为Sn,满足SaSnnn=−,222111即SSSSSSSnnnnnnn=−−=−−+(nnSS−−−111),222整理可得2SSSSnnnn−−11=−········································································1分1S=1,则2SSSS=−,即21SS=−,可得S=·······························2分121122223211由2SSSS=−,即SS=−,可得S=,,2323333335*以此类推可知,对任意的nSN,0n,11在等式两边同时除以SSnn−1可得−=2·······················4分SSnn−1第1页共9页{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}11所以数列为等差数列,且其首项为=1,公差为2·································5分SSn111=+−=−12121nn(),因此,Sn=············································6分Sn21n−nS2111111()解:b==+=+−n1,2n2142121482121nnnnn+−+−+()()n11=+−Tn1············································································8分4821n+2*22不等式Tnm−3m+n对所有的nN恒成立,则mm−+30,39+579−57即m或m·····································································9分66因此,满足条件的正整数m的最小值为3······················································10分18.(12分)1(1)证明:由==BACBADDAC,,知==BADDAC,,2263111SSSAB=++=ADADACAB,sinsinAC,ABCABDACD26232即ADADACAC+=32,21两边同除以ADAC,得−=3······················································5分ADAC(2)设=BAD,则=DAC2,ABBDABD中,由正弦定理,得=①,sinsinBDAACDCACD中,由正弦定理,得=②,sinCDAsin22②①,结合sinsin,4==BDACDADCBD,得AC=····················7分cos1sin33sin−4sin3S=ABACsin3===3tan−4tansin2ABC2coscos第2页共9页{#{QQABDYKAogiAABAAABgCAQFKCEOQkAGCCAoOxAAEsAAAgRNABCA=}#}tan3tantan23−=−=3tan4tan····································9分1tan1tan++223tt−3设tan0,3=t,即求函数yt=,0,3的最大值,()1+t2()(3−3t2)(1+t2)−(3t−t3)2t(23−3−tt22)(23+3+)y=22=,(11++tt22)()t2−(0,233)时,y0,函数单调递增;t2−(233,3)时,y0,函数单调递减,当2时,函数有最大值,,t=−233ymax=−639ABC面积的最大值为639−····························································12分19.(12分)(1)记蚂蚁爬行n次在底面ABCD的概率为Pn,212由题意可得,PPPP==+−,1()····················································3分11333nnn+111111PPPnnn+1−=−−−,是等比数列,首项为,公比为−,232263111111nn−−11························································5分PPnn−=−=+−,263263(2)X=0,1,2,X=2时,蚂蚁第3次、第5次都在C处,1121211212211111PX(==2222)++++=66363663633666618··············································································································7分X=1时,蚂蚁第3次在C处或第5次在C处,设蚂蚁第3次在C处的概率为P1,1121211211515211P
数学-THUSSAT中学生标准学术能力诊断性测试2024年1月测试
2024-01-14
·
11页
·
740.1 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片