【新结构】江苏省南通市2024届新高考适应性调研试题答案和解析【答案】1.B 2.A 3.D 4.D 5.D 6.B 7.B 8.A 9.BC 10.BD 11.ACD 12.18 13. ; 14.7 15.解:函数定义域为,因为是函数的极值点,所以,解得或,因为,所以此时得函数单调递增,得函数单调递减,所以是函数的极大值.所以若,,则函数的单调增区间为若,,因为,,则,由,结合函数的定义域,可得由,可得函数的单调增区间为单调减区间为综上可知:当时,函数在上单调递增,无递减;当时,函数在上单调递增,在上单调递减. 16.解:前4局A都不下场说明前4局A都获胜,故前4局A都不下场的概率为的所有可能取值为0,1,2,3,4,其中,表示第1局B输,第4局是B上场,且B输,则;表示第1局B输,第4局是B上场,且B赢;或第1局B赢,且第2局B输,则;表示第1局B赢,且第2局B赢,第3局B输,则;表示第1局B赢,且第2局B赢,第3局B赢,第4局B输,则;表示第1局B赢,且第2局B赢,第3局B赢,第4局B赢,则所以X的分布列为X01234P故X的数学期望为 17.解:证明:因为四边形ABCD为菱形,所以,因为平面平面ABCD,平面平面,平面ABCD,所以平面PBD,因为平面PBD,故设,则O为AC、BD的中点,又因为,所以,又因为平面PBD,平面PBD,所以,因为,AC、平面ABCD,所以平面ABCD,所以为PA与平面ABCD所成角,故,由于四边形ABCD为边长为,的菱形,所以,,以点O为坐标原点,OA、OB、OP所在直线分别为x、y、z轴建立如下图所示的空间直角坐标系:则,,,,,由,得,且,设平面BEC的法向量为,则,取,则,,所以,又平面BCD的一个法向量为,所以,所以平面EBD与平面BCD的夹角的余弦值为 18.解:Ⅰ离心率为,,,,,则,椭圆C的方程的方程为:Ⅱ由Ⅰ得,,直线,的方程分别为:,,由得,,可得,由,可得,,可得,,,直线MN的方程为:, ,可得直线MN过定点,故设MN的方程为:,由得,设,,则,,,的面积,令,则,,且函数在递增,当,s取得最小值 19.解: 是 数表,由题可知 .当 时,有 ,所以 .当 时,有 ,所以 .所以 所以 或者 , 或者 , 或 , 或 ,故各数之和 ,当 时,各数之和取得最小值 22 .由于 数表 中共 100 个数字,必然存在 ,使得数表中 k 的个数满足 设第 i 行中 k 的个数为 当 时,将横向相邻两个 k 用从左向右的有向线段连接,则该行有 条有向线段,所以横向有向线段的起点总数 设第 j 列中 k 的个数为 .当 时,将纵向相邻两个 k 用从上到下的有向线段连接,则该列有 条有向线段,所以纵向有向线段的起点总数 所以 ,因为 ,所以 .所以必存在某个 k 既是横向有向线段的起点,又是纵向有向线段的终点,即存在 使得 ,所以 ,则命题得证. 【解析】1.【分析】本题考查求百分位数,属于基础题.根据百分位数的定义即可得到答案.【解答】解:因为,根据百分位数的定义可知,该数学成绩的第15百 分位数为第2个数据故选:2.【分析】本题考查双曲线的性质和离心率的知识点,属于基础题.由题易知,根据公式求出离心率的值.【解答】解:由题可知双曲线的渐近线方程为,所以,所以故答案为3.【分析】本题考查等差数列,属于基础题.利用即可求解.【解答】解:因为,所以故答案选:4.【分析】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,属基础题.根据相关定理或性质逐一判定即可得出结论.【解答】解:对于A,由面面平行的定义可得n与没有公共点,即,故A正确;对于B,如果,,那么在内一定存在直线,又,则,故B正确;对于C,如果,,那么根据线面平行的性质可得 ,故C正确;对于D,如果,,则或,又,那么与可能相交,也可能平行,故D错误.故选5.【分析】本题考查排列、组合的综合应用,属于中档题.由6人平均分3个不同组,共!种,排除甲在歌曲演唱小组,乙在歌曲诗歌创作小组的可能结果即可.【解答】解:6人平均分3个不同组,共!种,甲在歌曲演唱小组,此时有!种,乙在歌曲诗歌创作小组,此时有!种,甲在歌曲演唱小组且乙在歌曲诗歌创作有种,故共有种,故选:6.【分析】本题考查两直线平行的判定及其应用,考查充分、必要条件的判断,属于基础题.根据两直线的位置关系、充分和必要条件的定义进行判断.【解答】解:当 时, ,解得 或 ,经检验可知 或 都符合.所以“ ”是“ ”的充分不必要条件.故选:B7.【分析】本题考查两角和的余弦公式、诱导公式的应用,考查三角函数的化简求值,属于基础题.根据两角和的余弦公式和诱导公式化简求值即可.【解答】解:由,可得,即,得,因为,,所以,,故选8.【分析】本题考查双曲线中的面积问题,属于较难题.由题意画出图,由已知求出c的值,找出的坐标,由的内切圆圆心分别为,进行分析,由等面积法求出内切圆的半径,从而求出的底和高,利用三角形的面积公式计算即可.【解答】解:由题意如图所示:由双曲线,知,所以,所以,,所以过作垂直于x轴的直线为,代入C中,解出,由题知的内切圆的半径相等,且,的内切圆圆心的连线垂直于x轴于点P,设为r,在中,由等面积法得:,由双曲线的定义可知:,由,所以,所以,解得:,因为为的的角平分线,所以一定在上,即x轴上,令圆半径为R,在中,由等面积法得:,又,所以,所以,所以,,所以故选9.【分析】本题考查了三角函数的性质,属于基础题.直接利用相应性质的判断方法判断即可.【解答】解:函数定义域为R关于原点对称,又,是偶函数,故A正确;当时,易判断时,函数有3个零点,故C不正确;当时,函数单调递减,故B不正确;显然,,存在使得,,故的最大值为2,故D正确.10.【分析】本题考查复数代数形式的乘除运算,考查复数模的求法,属于一般题.由复数的模及复数的基本概念判断B与D;举例判断A与【解答】解:取,,满足,但,,故A错误;利用模的运算性质可知B正确;取,则,但,故C错误;设,,,即,故D正确.故选:11.【分析】本题考查抽象函数的奇偶性、对称性及周期性,属于难题.令可判断A;若为偶函数,令,可得,与已知矛盾,从而可判断B;取,得到,结合为偶函数可判断C;由C可得的周期为6,对称轴为,从而可得,根据周期性可判断【解答】解:令,可得,解得,故A正确;若为偶函数,令,,可得,即,则,解得,与矛盾,故不是偶函数,故B错误;取,可得,化得,则或,易知若,则,可得恒成立,即为奇函数.因为为偶函数,所以,即,即因为,所以,故C正确;因为,所以,所以的周期为因为,所以的对称轴为,因为,所以,,,,,所以又,所以,故D正确.故选12.【分析】本题考查集合的新定义问题,属于基础题.根据的定义即可求出集合中的元素,从而得出各元素之和.【解答】解:当;当;当;当,集合,集合所有元素的和为故答案为:13.【分析】本题考查双曲线的简单性质,以及几何体体积的计算,属于中档题.过y轴任意一点作直线,交双曲线渐近线、双曲线于、,计算内部圆形绿色部分和环带面积橙色部分,利用祖暅原理即可求解.【解答】解:如图所示,,双曲线的一条渐近线方程为,设,,当绕y轴旋转一周时,内部圆形面积绿色部分为,所以线段BC旋转一周所得的图形的面积是,外部橙色环带面积为,此部分对应的体积等价于底面积为,高为的圆柱,所以几何体的体积为橙色部分圆锥部分故答案为 ;14.【分析】本题考查集合的新定义,为难题.【解答】解:7阶中元素个数为7个,设为,则7阶的三元子集的集合个数为,若要使得X中的任意两个不同的元素,都恰好同时包含在唯一的一个三元子集中,不妨先挑选,则三元子集中不能包含:,共12个剔除;再从剩余三元子集中挑选,则剩余三元子集中不能包含:,共8个剔除;接着再在剩余三元子集中挑选,则此时剩余三元子集中不能包含:,共4个剔除;接着再在剩余三元子集中挑选,则此时剩余三元子集中不能包含:共3个剔除,接着再在剩余三元子集中挑选,则此时剩余三元子集中不能包含:,共1个剔除;综上一共剔除28个,此时剩余,均符合题意.则集合A中元素的个数为15.本题考查导数知识的运用,考查函数的极值,考查函数的单调性,正确求导,合理分类是关键.确定函数的定义域,求导函数,利用是函数的极值点,即可求a的值;分类讨论,利用导数的正负,结合函数的定义域,可得函数的单调区间.16.本题考查相互独立事件的概率,以及离散型变量的分布列与均值,属于中档题.根据相互独立事件的概率公式即可求解;列出X的所有可能取值,根据相互独立事件的概率公式分布求解对应的概率从而可得分布列,再利用期望公式求解即可.17.利用面面垂直的性质定理可得出平面PBD,再利用线面垂直的性质可证得设,推导出平面ABCD,可得出为PA与平面ABCD所成角,然后以点O为坐标原点,OA、OB、OP所在直线分别为x、y、z轴建立空间直角坐标系,利用空间向量法可求得平面EBD与平面BCD的夹角的余弦值.本题考查直线与平面的位置关系,二面角,解题关键是空间向量法的应用,属于中档题.18.本题考查了椭圆的方程,直线与椭圆的位置关系,方程思想,转化思想,考查了运算能力,属于难题.Ⅰ由离心率为,,列式计算a,b,即可得椭圆C的方程的方程.Ⅱ直线,的方程分别为:,,由得,可得,,同理可得,,直线MN的方程为:,,可得直线MN过定点,故设MN的方程为:,由得,,即的面积利用函数单调性即可求出面积最大值.19.本题考查数阵新定义问题,属于综合题.根据题中条件可判断结果,根据题中公式进行计算即可;根据条件讨论 的值,根据 ,得到相关的值,进行最小值求和即可;当 时,将横向相邻两个 k 用从左向右的有向线段连接,则该行有 条有向线段,得到横向有向线段的起点总数,同样的方法得到纵向有向线段的起点总数,根据条件建立不等关系,即可证明.
【新结构】江苏省南通市2024届新高考适应性调研试题答案解析
2024-02-19
·
16页
·
793.8 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片