真题重组卷03(新七省专用)(参考答案)

2024-03-14 · 6页 · 527 K

冲刺2024年高考数学真题重组卷(新七省专用)真题重组卷03参考答案)(考试时间:120分钟试卷满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。12345678AADBDBCB二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。91011ACADBCD第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。12.13.6014.四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤。15.(本小题满分13分)【解析】(1)当漏诊率(c)时,则,解得;(c);(2)当,时,(c)(c)(c),当,时,(c)(c)(c),故(c),所以(c)的最小值为0.02.16.(本小题满分15分)【解】(1)由题意知,则;由,则,故椭圆的标准方程为;(2)由题意知,直线的斜率存在且不为0,设其方程为,联立,得,由,得,设,,则,,则,因为,所以,即,∴,则或,综上,斜率范围为.17.(本小题满分15分)【解析】(1)由直三棱柱的体积为4,可得,设到平面的距离为,由,,,解得.(2)连接交于点,,四边形为正方形,,又平面平面,平面平面,平面,,由直三棱柱知平面,,又,平面,,以为坐标原点,,,所在直线为坐标轴建立如图所示的空间直角坐标系,,,又,解得,则,0,,,2,,,0,,,2,,,1,,则,2,,,1,,,0,,设平面的一个法向量为,,,则,令,则,,平面的一个法向量为,0,,设平面的一个法向量为,,,,令,则,,平面的一个法向量为,1,,,,二面角的正弦值为.18.(本小题满分17分)【解析】(1)证明:设,,则,,在上单调递减,,在上单调递减,,即,,,,设,,则,在上单调递增,,,即,,,,综合可得:当时,;(2),,且,,①若,即时,易知存在,使得时,,在上单调递增,,在上单调递增,这显然与为函数的极大值点相矛盾,故舍去;②若,即或时,存在,使得,时,,在,上单调递减,又,当时,,单调递增;当时,,单调递减,满足为的极大值点,符合题意;③若,即时,为偶函数,只考虑的情况,此时,时,,在上单调递增,与显然与为函数的极大值点相矛盾,故舍去.综合可得:的取值范围为,,.19.(本小题满分17分)【解】(1)因为,则,又,所以,故函数具有性质;因为,则,又,,故不具有性质.(2)若函数具有性质,则,即,因为,所以,所以;若,不妨设,由,得(*),只要充分大时,将大于1,而的值域为,故等式(*)不可能成立,所以必有成立,即,因为,所以,所以,则,此时,则,而,即有成立,所以存在,使函数具有性质.(3)证明:由函数具有性质及(2)可知,,由可知函数是以为周期的周期函数,则,即,所以,;由,以及题设可知,函数在的值域为,所以且;当,及时,均有,这与在区间上有且只有一个零点矛盾,因此或;当时,,函数在的值域为,此时函数的值域为,而,于是函数在的值域为,此时函数的值域为,函数在当时和时的取值范围不同,与函数是以为周期的周期函数矛盾,故,即,命题得证.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐