{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}哈师大附中2024年高三第三次模拟考试数学参考答案一.单项选择题1-4BACD5-8AADD二.多项选择题9.BD10.BCD11.BCD三.填空题333312.413.[,−]14.442四.解答题x2+1115.解:(Ⅰ)fxx()0=,(),ff(1),==(1)03xx(1)+22111fx()在(1,(1)f)处的切线方程为yx−0=(−1),即yx=−6222(Ⅱ),fx()在(0,+)上单调递增9又f(1)=0,x(0,1)时f(x)0x−1即lnx在x(0,1)上恒成立11x+12023−120231ln2024=−20232024+14047202420231即ln−1320244047nn+1n16.解:(Ⅰ)Sann=−32,Sann++11=−32,两式相减得:2aann+1=+32232(aa−2nn+1)=3(−2),即aa−2nn+1=(−2)4nn+1nn+121S1=3a1−2,a1=11na1−2=−10,an−206a−2n+133n+1n=n,−an2是以-1为首项,为公比的等比数列7an−222n−133(II)由(Ⅰ)可知nnn−1an−2=(−1),an=2−()822{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}3b=(1+)2nn−(+2)()−1n23b=+−+(1)2(2)()nn+1n+12*bn是递增数列,bbnn+1对nN恒成立33+−++−+(1)2(2)()(1)2(2)()nnnn+−11223即++3(1)(2)()n104(1)当+20时,即−2时3(1)+3333(1)+()n,()0n,且→+→n,()0n,故0+2444+2−21−(舍)12(2)当+=20时,即=−2时−30矛盾,(舍)13(3)当+20时,即−2时3(1+)33333(1)3+()n,()()n=1,故+24444+2422−,满足,故−153317.解:(Ⅰ)设第i局甲胜为事件Ai,则第局乙胜为事件Ai,其中i=1,2,3,2则“第3局甲开球”=A2PAPAAPAAPA()()()()21=+=+212121121()()()PAAPAPAA422115PA()2=+=633339(II)依题X=1,2,3,471224P(1)()XP=AA==A=123333272121111217PXPAAAPAAAPAAA(==2)()+()+()=++=123123123333333333272212111128PXPAAAPAAAPAAA(==3)()+()+()=++=123123123333333333272228PXPAAA(=4)=()==12333327X的分布列为{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}478874Ex()1234=+++=15272727282718.解:(Ⅰ)在棱AB上取点F,使AFF=B2,连接DF,FB1由已知DC//,FBDC=FB,四边形BCDF为平行四边形,DFB//C2又BCB//C11,DFB//C11,即DF,,,BC11四点共面4连接FC1,由已知EFDCEFDC//,=,DCD//,CDCD1111C==EFD//,CEFD1111C四边形EFC11D为平行四边形,DEFC11//6DE1平面DFBC11,FC1平面DFB11CDE1//平面即DE1//平面DB11C7(Ⅱ)在菱形ADD11A中,=AAD160,取AD11中点G,连接DG,则DG⊥AD又平面ADDA11⊥平面ABCD,⊥DG平面8在等腰梯形中,DEDC⊥,DE=3DE,,DCDG两两互相垂直,以D为原点DE,,DCDG所在直线分别为x,,yz轴,建立空间直角坐标系DABCG(0,0,0),(3,−1,0),(3,2,0),(0,1,0),(0,0,3)10−33(ⅰ)DC=DG+GD+DC=(,,3),CB==(3,1,0),DC(0,1,0)11112211设n=(,,)xyz为平面DB11C的一个法向量{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}33nDCxyz=−++=30则122得n=−(1,3,2)11nCBxy=+=1130设mx=yz(,,)为平面DCC1的一个法向量33mDCxyz=−++=30则122得m=(2,0,1)12mDCy==0设平面DB11C与平面夹角为mn10则coscos,===mnmn510平面与平面夹角余弦值为14531(ⅱ)DADGGA=+=−(,,3)112233++23DAn12236点A1到平面的距离为==17n134++419.解:(Ⅰ)依题直线AB方程为yx=−1,代入yx2=得yy2−−=10,=(−−−=1)4(21)50设,A(,),(,)xyB1122xy则y1+y2=1,y1y2=−1224AB=1+1y12−y=10(Ⅱ)设代入lAB:x=m(y−1)+2得y2−my+m−20=,6设N(,)t2t,{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}yymyym1212+==−,28222210NANBytytytyt=−−+−−=()()()()01212即2yytyyt1212++++=()10mtmt−+++=2102即(t+1)m+(t2−1)=0=t−1,即N(1,−1)12(Ⅲ)设AaaBbbEccDd(2,),(2,),(2,),(2,)da−2labyxab:()+=+过M(2,1),+=+=ababb2,13ABa−1d−2lcdyxcd:()+=+过,+=+=cdcdc2,14EDd−11ladyxcd:()+=+与yx=联立AD22ad2bcx=,同理x=15Pad+−2Qbc+−2ad−−222()()222adbcad+=+=+xxad−−11PQad−−22a+−+db222−+−cad+−2ad−−1122448448adadadad−−++−=+===42xadadad+−−−+−222MPQ,中点为M17{#{QQABYYSEgggoAJAAARgCQQnSCkCQkAGACKoOgFAIIAAACBFABCA=}#}
哈师大附中2024年高三第三次模拟考试-数学试题
2024-05-08
·
9页
·
1.3 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片