{#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}{#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}{#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}{#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}厦门市2024届高中毕业班第四次质量检查一、单选题1-4.ACAC5-8.CBDB二、多选题9.AD10.ABD11.ACD三、填空题ππ12.23;13.(,1)(1,)−−+;14.(,);62四、解答题Sn15.设S为数列an的前n项和,已知aS24==2,10,且为等差数列.nn(1)求数列an为通项公式;an,为奇数,n(2)若数列bn满足bn=1求数列bn的前2n项和T2n.,n为偶数,anan+2Sn解析:(1)设等差数列的公差为d,因为aS11==1,nSS101所以41−=3d,即−=13d,d=,.......................................................2分4142S1nn(1)+所以n=+1(1)n−,即S=,.............................................................3分n2n2nn(1)(1)+−nn当n≥2时,aSS=−=−=n,............................................5分nnn−122当n=1时,a1=1,满足上式,所以ann=...........................................................................................................6分nn,为奇数,(2)由(1)知bn=1...........................................................7分,n为偶数,nn(+2)则Tbbbb2135212462nn=++()()+−+++bbbb+n...............................................8分1111=++(135+2n−+1)(+++).............................9分2446682nn+(22)nn(1+−21)1111111=+−+−++−()...........................................11分222446222nn+11=+−n2.......................................................................................................13分44n+411所以数列b的前2n项和为Tn=+−2.n2n44n+416.(15分)某地区为了解居民体育锻炼达标情况与性别之间的关系,随机调查了600位居民,得到如下数据:不达标达标合计男300女100300{#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}合计450600(1)完成22列联表.根据小概率值=0.01的独立性检验,能否认为体育锻炼达标与性别有关联?4(2)若体育锻炼达标的居民体能测试合格的概率为,体育锻炼未达标的居民体52能测试合格的概率为,以频率估计概率,从该地区居民中随机抽取3人参加体能测5试,求3人中合格的人数X的分布列及期望.nadbc(−)2(x对应值见下表.2=,nabcd=+++)(abaccdbd++++)()()()01.005.001.x2.7063841.6.635方法一:(1)22列联表如下表:不达标达标合计男50250300女100200300合计150450600......................................................................................................................................1分零假设为H0:体育锻炼达标与性别独立,即体育锻炼达标与性别无关..........................2分2600(50−200250100)2002==22.2226.635.....................................5分3003001504509根据小概率值=0.01的独立性检验,推断H0不成立,即认为体育锻炼达标与性别有关联,该推断犯错误的概率不超过0.01.......................................................................6分(2)设事件A=“随机抽取一人体育锻炼达标”,事件B=“随机抽取一人体能测试合3142格”,则PA()=,PB()=,PB(|)A=,PB(|)A=.....................................8分44557所以PB()=+=PAPB()(|A)PAPB()(|A)..................................................10分10X的可能取值为:0,1,2,3.....................................................................11分327PX(==0)()3=10100037189PX(1)()()==C12=...........................................................................12分31010100037441PX(==2)C22()()=3101010007343PX(3)()==3=......................................................................................13分101000所以X的分布列为X0123{#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}27189441343P100010001000100027189441343所以EX()=0+1+2+3=2.1.............................15分1000100010001000方法二:(1)同方法一(2)设事件A=“随机抽取一人体育锻炼达标”,事件B=“随机抽取一人体能测试合3142格”,则PA()=,PB()=,PB(|)A=,PB(|)A=.....................................8分44557所以PB()=+=PAPB()(|A)PAPB()(|A)..................................................10分107因为XB(3,).................................................................................................12分1037所以PX()()(),0,1,2,3==kCkkk3−k=.......................................................14分310107所以EX()=3=2.1...................................................................................15分1017.如图,在四棱台ABCD−A111BCD1中,底面ABCD是边长为2的正方形,BC11=1.(1)证明:AA1∥平面BDC1;(2)若AA1⊥BD,BC11==CC2,求平面BC1D与平面B11CD所成角的余弦值.方法一:(1)由棱台定义可知AA1与CC1共面,且平面ABCD∥平面ABCD1111.......................................................................................................................................1分又平面ABCD平面ACC11A=AC,平面ABCD1111平面ACC11A=AC11,所以AC∥AC11..........................................................................................................2分连接AC交BD于点O,则O为AC中点.因为BC==22B11C,所以AC11=AO.................................................................3分所以四边形AAOC11是平行四边形,所以AA11∥OC............................................4分又AA1平面BDC1,OC1平面BDC1,所以AA1∥平面BDC1.......................5分(2)在正方形ABCD中,BD⊥AC,又BD⊥AA1,ACAA1=A,所以BD⊥平面ACC11A..........................................................................................6分因为OC1平面ACC11A,所以BD⊥OC1在Rt△BOC1中,=BOC190,BO=2,BC1=2,所以OC1=2.......8分222在△OCC1中,OC==OC12,CC1=2,所以OC+=OC11CC,所以OC⊥OC1.........................................................................................................9分以O为原点,分别以OB,OC,OC1为x轴,y轴,z轴的正方向建立空间直角坐标系.2222B(2,0,0),D(−2,0,0),C(0,2,0),B(,−,2),D(,,2)−−,122122232所以BD=−(2,0,0),BC=−(,,2)−............................................10分11122设平面B11CD的法向量为nxyz=(,,),{#{QQABCYQAgggAQJIAARgCQQFQCgMQkBGAACoOwBAMMAIACQNABCA=}#}nBD=110x=0则,即,320yz−=nBC=10令y=2,则z=3,所以n=(0,2,3),..................................................................12分又因为平面BC1D的法向量m=(0,1,0),..............................................................13分mn213所以cosm
2024届福建省厦门市高三下学期第四次质量检测考试数学试题+答案
2024-05-13
·
11页
·
1.7 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片