黄金冲刺大题07新定义综合(数列新定义、函数新定义、集合新定义)(精选30题)1.(2024·辽宁·二模)已知数列的各项是奇数,且是正整数的最大奇因数,.(1)求的值;(2)求的值;(3)求数列的通项公式.【答案】(1),(2),,(3)【分析】(1)根据所给定义直接计算可得;(2)根据所给定义列出,即可得解;(3)当为奇数时,即可求出,当为偶数时,从而得到,即可推导出,再利用累加法计算可得.【详解】(1)因为,所以,又,所以;(2)依题意可得,,,,,,,所以,,.(3)因为是正整数的最大奇因数,当为奇数,即时,所以,当为偶数,即时,所以当时,所以,所以且,所以,当时也满足,所以数列的通项公式为.【点睛】关键点点睛:本题关键是理解定义,第三问关键是推导出且,最后利用累加法求出.2.(2024·黑龙江双鸭山·模拟预测)已知数列的各项均为正整数,设集合,,记的元素个数为.(1)若数列A:1,3,5,7,求集合,并写出的值;(2)若是递减数列,求证:“”的充要条件是“为等差数列”;(3)已知数列,求证:.【答案】(1).(2)证明见解析;(3)证明见解析【分析】(1)根据题意,结合集合的新定义,即可求解;(2)若为等差数列,且是递减数列,得到,结合,证得充分性成立;再由是递减数列,得到,结合互不相等,得到,得到必要性成立,即可得证;(3)根据题意,得到,得出,得到,不妨设,则,推得为奇数,矛盾,进而得证.【详解】(1)解:由题意,数列,可得,所以集合,所以.(2)证明:充分性:若为等差数列,且是递减数列,则的公差为,当时,,所以,则,故充分性成立. 必要性:若是递减数列,,则为等差数列,因为是递减数列,所以,所以,且互不相等,所以,又因为,所以且互不相等,所以,所以,所以为等差数列,必要性成立.所以若是递减数列,“”的充要条件是“为等差数列”.(3)证明:由题意集合中的元素个数最多为个,即, 对于数列,此时,若存在,则,其中,故, 若,不妨设,则,而,故为偶数,为奇数,矛盾,故,故,故由得到的彼此相异,所以.3.(2024·广西·二模)已知函数,若存在恒成立,则称是的一个“下界函数”.(1)如果函数为的一个“下界函数”,求实数的取值范围;(2)设函数,试问函数是否存在零点?若存在,求出零点个数;若不存在,请说明理由.【答案】(1)(2)函数F(x)是否存在零点,理由见解答【分析】(1)把恒成立问题转换为求的最小值问题,利用导数求出最小值即可;(2)把函数整理成,要判断是否有零点,只需看的正负问题,令,利用导数分析即可.【详解】(1)由恒成立,可得恒成立,所以恒成立,令,所以,当时,,在单调递减;当时,,在单调递增;所以的最小值为,所以,实数t的取值范围;(2)由(1)可知,所以,所以,①又,所以,令,所以,当时,,在单调递减;当时,,在单调递增;所以,②所以,又①②中取等号的条件不同,所以所以函数没有零点.4.(2024·湖南长沙·模拟预测)设n次多项式,若其满足,则称这些多项式为切比雪夫多项式.例如:由可得切比雪夫多项式,由可得切比雪夫多项式.(1)若切比雪夫多项式,求实数a,b,c,d的值;(2)对于正整数时,是否有成立?(3)已知函数在区间上有3个不同的零点,分别记为,证明:.【答案】(1)(2)成立(3)证明见解析【分析】(1)利用展开计算,根据切比雪夫多项式可求得;(2)要证原等式成立,只需证明成立即可,利用两角和与差的余弦公式可证结论成立;(3)由已知可得方程在区间上有3个不同的实根,令,结合(1)可是,可得,计算可得结论.【详解】(1)依题意,,因此,即,则,(2)成立.这个性质是容易证明的,只需考虑和差化积式.首先有如下两个式子:,,两式相加得,,将替换为,所以.所以对于正整数时,有成立.(3)函数在区间上有3个不同的零点,即方程在区间上有3个不同的实根,令,由知,而,则或或,于是,则,而,所以.5.(2024·浙江·模拟预测)已知实数,定义数列如下:如果,,则.(1)求和(用表示);(2)令,证明:;(3)若,证明:对于任意正整数,存在正整数,使得.【答案】(1)(2)证明见解析(3)证明见解析【分析】(1)观察题目条件等式中的系数可得答案;(2),分别计算和可证明结论;(3)先根据无上界说明存在正整数,使得,分是偶数和是奇数分别说明.【详解】(1)因为,所以;因为,所以;(2)由数列定义得:;所以.而,所以;(3)当,由(2)可知,无上界,故对任意,存在,使得.设是满足的最小正整数.下面证明.①若是偶数,设,则,于是.因为,所以.②若是奇数,设,则.所以.综上所述,对于任意正整数,存在正整数,使得.6.(2024·辽宁·三模)若实数列满足,有,称数列为“数列”.(1)判断是否为“数列”,并说明理由;(2)若数列为“数列”,证明:对于任意正整数,且,都有(3)已知数列为“数列”,且.令,其中表示中的较大者.证明:,都有.【答案】(1)数列是“数列”,数列不是“数列”;(2)证明见解析(3)证明见解析【分析】(1)根据“数列”的定义判断可得出结论;(2)由可得出,利用累加法结合不等式的基本性质可得,以及,再结合可证得结论成立;(3)首先当或2024时的情况,再考虑时,结合(2)中结论考虑用累加法可证得结论.【详解】(1)因为,所以数列是“数列”,因为,所以数列不是“数列”;(2)令,因为数列为“数列”,所以从而,所以因为,所以,因为,所以.(3)当或2024时,,从而,当时,因为,由第(2)问的结论得,可推得,从而对于,由第(2)问的结论得,从而也成立,从而对于,由第(2)问的结论得,从而也成立,从而所以由条件可得,所以.【点睛】方法点睛:本题主要考查数列新定义的问题,处理此类问题时,通常根据题中的新定义,结合已知结论进行推导、求解;本题中,根据“数列”的定义“”结合作差法、不等式的性质进行推理、证明不等式成立,并在推导时,充分利用已有的结论进行推导,属于难题.7.(2024·广东梅州·二模)已知是由正整数组成的无穷数列,该数列前项的最大值记为,即;前项的最小值记为,即,令(),并将数列称为的“生成数列”.(1)若,求其生成数列的前项和;(2)设数列的“生成数列”为,求证:;(3)若是等差数列,证明:存在正整数,当时,,,,是等差数列.【答案】(1)(2)证明见解析(3)证明见解析【分析】(1)利用指数函数的性质判断数列的单调性,从而得出{pn}的通项,由分组求和法及等比数列的前n项和公式进行求解即可;(2)根据数列的单调性,结合生成数列的定义进行证明即可;(3)根据等差数列的定义分类讨论进行证明即可.【详解】(1)因为关于单调递增,所以,,于是,的前项和.(2)由题意可知,,所以,因此,即是单调递增数列,且,由“生成数列”的定义可得.(3)若是等差数列,证明:存在正整数,当时,是等差数列.当是一个常数列,则其公差必等于0,,则,因此是常数列,也即为等差数列;当是一个非常数的等差数列,则其公差必大于0,,所以要么,要么,又因为是由正整数组成的数列,所以不可能一直递减,记,则当时,有,于是当时,,故当时,,…,因此存在正整数,当时,,…是等差数列.综上,命题得证.【点睛】方法点睛:常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.8.(2024·浙江绍兴·二模)已知,集合其中.(1)求中最小的元素;(2)设,,且,求的值;(3)记,,若集合中的元素个数为,求.【答案】(1)7(2)或10(3)【分析】(1)根据集合新定义,确定中最小的元素即可;(2)根据集合中的元素可得,设,,分别讨论当时,当时,当时,的取值情况,即可得结论;(3)设,则,其中,,所以,根据组合数的运算性质确定与的关系,即可求得的值.【详解】(1)中的最小元素为.(2)由题得,设,.①当时,或或或或或.经检验,当时,,符合题意,所以.②当时,或或或.经检验,当时,,符合题意,所以.③当时,不符合题意.因此,或10.(3)设,则,其中,,所以,设,则.因为,所以.因为,所以,所以,又因为,所以.【点睛】方法点睛:解决以集合为背景的新定义问题,注意两点:(1)根据集合定义式,确定集合中元素的特点,结合指数运算确定指数的取值情况从而得集合中的元素性质;(2)确定集合中的元素个数为时,结合组合数的运算性质确定与的关系.9.(2024·山东潍坊·二模)数列中,从第二项起,每一项与其前一项的差组成的数列称为的一阶差数列,记为,依此类推,的一阶差数列称为的二阶差数列,记为,….如果一个数列的p阶差数列是等比数列,则称数列为p阶等比数列.(1)已知数列满足,.(ⅰ)求,,;(ⅱ)证明:是一阶等比数列;(2)已知数列为二阶等比数列,其前5项分别为,求及满足为整数的所有n值.【答案】(1)(ⅰ),,;(ⅱ)证明见解析(2)当时,为整数.【分析】(1)(ⅰ)根据的定义,结合通项公式求解即可;(ⅱ)根据递推公式构造即可证明;(2)由题意的二阶等差数列为等比数列,设公比为,可得,结合进而可得,从而分析为整数当且仅当为整数,再根据二项展开式,结合整除的性质分析即可.【详解】(1)(ⅰ)由,易得,……由一阶等差数列的定义得:,,.(ⅱ)因为,所以当时有,所以,即,即,又因为,故是以1为首项,2为公比的等比数列,即是一阶等比数列.(2)由题意的二阶等差数列为等比数列,设公比为,则,,所以.由题意,所以,所以,即.所以为整数当且仅当为整数.由已知时符合题意,时不合题意,当时,,所以原题等价于为整数,因为①,显然含质因子3,所以必为9的倍数,设,则,将代入①式,当为奇数时,为偶数,①式为2的倍数;当为偶数时,为奇数,为偶数,①式为2的倍数,又因为2与9互质,所以①为整数.综上,当时,为整数.【点睛】方法点睛:(1)新定义的题型需要根据定义列出递推公式,结合等比等差的性质求解;(2)考虑整除时,可考虑根据二项展开式进行讨论分析.10.(2024·贵州黔西·一模)布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可运用到有限维空间并构成了一般不动点定理的基石,得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer).简单地讲就是:对于满足一定条件的连续函数,存在实数,使得,我们就称该函数为“不动点”函数,实数为该函数的不动点.(1)求函数的不动点;(2)若函数有两个不动点,且,若,求实数的取值范围.【答案】(1)(2)【分析】(1)根据不动点定义求解即可;(2)根据题意问题转化为方程有两个不等的实数根,令,利用导数判断单调性极值,可得,且的值随着的值减小而增大,列式求出时的值,得解.【详解】(1)设的不动点为,则,解得,所以函数的不动点为.(2)函数有两个不动点,即方程,即有两个不等的实数根,令,则,当时,,当时,,所以函数在上单调递增,在上单调递减,,且时,,时,,作出的大致图象如下:所以,且的值随着的值减小而增大,当时,有,两式相减得,解得,即,代入,解得,所以此时,所以满足题意的实数的取值范围为.11.(2024·河北沧州·一模)对于函数,,若存在,使得,则称为函数的一阶不动点;若存在,使得,则称为函数的二阶不动点;依此类推,可以定义函数的阶不动点.其中一阶不动点简称为“不动点”,二阶不动点简称为“稳定点”,函数的“不动点”和“稳定点”构成的集合分别记为和,即,.(1)若,证明:集合中有且仅有一个元素;(2)若,讨论集合的子集的个数.【答案】(1)证明见解析(2)答案见解析【分析】(1)令,求导,可得函数的单调性,进而可得函数有唯一零点,可得结论;(2)由题意可知只需研究的不动点即可,令,求出其导数,判断其单调性,然后分类讨论的取值范围,判断的零点情况,即可判断的稳定点个数.,进而可得集合的子集的个数.【详解】(1)令,求导得,令,可得,当,,当,,所以,所以有唯一零点,所以集合中有且仅有一个元素;(2)当时
【黄金冲刺】2024年考前15天高考数学极限满分冲刺(新高考通用大题07新定义综合(数列新定义、函数
2024-05-25
·
55页
·
3.2 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片