绝密★启用前2025年高考考前信息必刷卷05(新高考Ⅰ卷)数学考情速递高考·新动向:1.阅读量增加(如数学文化题背景描述),要求快速提取关键信息并建立模型,例如第12题。2.新颖但是常规,注重基础知识能力的考查,例如第4、5、15题。高考·新考法:1.新定义问题,创新但不变态,例如第6、19题。2.解答题的题量增大,本卷第17、18、19都有3个小问。信息来源于2025年八省联考,其中4道大题有3个小问。高考·新情境:1.压轴题不再单一是某类题型,谁都可以压轴,同时压轴题思维难度降低一些,数学计算能力提升。例如第18题,信息来源于2025年八省联考19题。命题·大预测:预测1:曲线的轨迹方程问题,例如第11题。预测2:函数性质与导数的综合应用,例如13题。预测3:导数中构造函数的应用,例如第14题。预测4:概率与其他知识交汇,例如17题。(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。第一部分(选择题共58分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知复数满足为实数,且,则复数的虚部为( )A. B. C.2 D.【答案】D【分析】法一:令,代入后利用复数的除法法则化简,再结合为实数可得,根据复数的定义即可求解;法二:根据为实数,可设,结合复数的乘法法则及的定义即可求解.【详解】解法一:令,则.由于为实数,故,所以,解得,所以复数的虚部为.故选:D.解法二:由为实数,可设,所以.又,所以,解得,所以复数的虚部为.故选:D.2.已知集合,,则( )A. B. C. D.【答案】C【分析】先由指数函数的运算求出集合,再由交集的运算可得.【详解】由指数函数可得,所以.故选:C.3.已知、不共线,且,,那么、、三点共线的充要条件为( )A. B.C. D.【答案】D【分析】分析可知,,设,根据平面向量的基本定理可得出关于、、的方程组,消去即可得出结果.【详解】、、三点共线,设,即,由于、不共线,则,消去可得.因此,、、三点共线的充要条件为.故选:D.4.二项式的展开式中有理项的个数为( )A.4 B.3 C.2 D.1【答案】B【分析】由二项式展开式的通项公式求出通项,然后由指数为整数得到的取值,得出结果.【详解】二项式展开式的通项为.其中当k的值分别为0,2,4时,为有理项,共有3项.故选:B.5.已知数列的前项和为,且为等差数列,若,则( )A.-63 B.63 C.36 D.-36【答案】A【分析】根据可得,进而可得的公差,从而可得通项公式,再求解即可.【详解】即,故.设的公差为,则,解得,又,故是首项为2,公差为1的等差数列,则,故.则.故选:A6.当,定义,则为( )A.周期函数 B.奇函数 C.偶函数 D.单调递增函数【答案】A【分析】利用周期函数定义判断A;特殊值可验证BCD;【详解】对于A,由题意,,所以是周期为1的周期函数;故A正确;对于BCD,,,所以,所以是非奇非偶函数,故BC错误;由于,可知D错误.故选:A7.已知以边长为4的正方形为底面的四棱锥,四条侧棱分别为,,,,则该四棱锥的体积为( )A. B. C. D.【答案】D【分析】不妨设该四棱锥为,其底面为正方形,边长为4,四条侧棱分别为,,,,然后分两种情况讨论求出四棱锥的高,再利用棱锥的体积公式可求得结果.【详解】不妨设该四棱锥为,其底面为正方形,边长为4,四条侧棱分别为,,,,当相对的棱长不相等时,不妨设,分别取的中点,连接,则,因为平面,所以平面,因为平面,平面平面,过于,因为平面平面,平面,所以平面,因为,所以,因为,所以为等腰直角三角形,所以,所以,所以,则由,得,所以四棱锥为的体积为当相对的棱长相等时,不妨设,因为,所以此时不能形成三角形,不符合题意,综上,此四棱锥的体积为.故选:D8.已知是双曲线(,)的左焦点,O为坐标原点,过点且斜率为的直线与的右支交于点,与左支交于点,,,则的离心率为( )A.2 B.3 C. D.【答案】B【分析】设出参数后,利用向量的性质结合给定条件得到是的中点,再利用中位线定理得到,结合并利用三线合一性质得到的长度,并用斜率的几何意义得到,然后利用三角函数的性质求出边长,结合双曲线的定义建立方程,求解离心率即可.【详解】如图,设中点为,设右焦点为,连接,因为,所以,且设,故,,因为是的中点,所以,得到,则,即是的中点,因为是的中点,所以是的中位线,故,因为,所以,由三线合一性质得,因为的斜率为,所以,由三角函数性质得,在中,,故,即,则,由双曲线定义得,得到,即,化简得,故B正确.故选:B【点睛】关键点点睛:本题考查解析几何,解题关键是利用几何关系表示出边长,然后利用三角函数的性质建立等式,得到所要求的离心率即可.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,下列命题中正确的是( )A.若,则 B.若,则C.若,则 D.若,则【答案】AC【分析】根据给定条件,利用基本不等式逐项分析求解.【详解】对于A,由,,得,当且仅当时取等号,A正确;对于B,由,得,当且仅当时取等号,B错误;对于C,由,,得,,则,当且仅当,即时取等号,C正确;对于D,由,,得,,当且仅当时取等号,D错误.故选:AC10.设函数,则( )A.是的极大值点B.C.的解集为D.当时,【答案】ABD【分析】先由导数求出函数的单调区间,再结合函数的单调性逐一判断即可.【详解】对于选项A:因为的定义域为,且,当时,,当或时,,可知在,上单调递增,在上单调递减,所以是函数的极大值点,故A正确对于选项B:因为,故B正确;对于选项C:对于不等式,因为,即为不等式的解,但,所以不等式的解集不为,故C错误对于选项D:因为,则,且,可得,因为函数在上单调递增,所以,故D正确;故选:ABD11.曲线上任意一点到定点的距离与到定直线的距离之和为,则下列说法中正确的有( )A.经过B.曲线上点的横坐标的取值范围是C.曲线的面积大于D.曲线上横纵坐标均为整数的点仅有6个【答案】BC【分析】根据距离公式求出曲线的方程,将代入方程判断A,根据图象将代入解出的范围判断B,利用三角形的面积公式放缩判断C,将,,,,,,代入曲线的方程求出对应的整数点判断D.【详解】设点,因为曲线上任意一点到定点的距离与到定直线的距离之和为,所以曲线的方程为,当时,得,两边平方得,当时,得,两边平方得,所以曲线的大致图象如图所示,将代入得,所以不经过,A说法错误;将代入解得,所以由图象得曲线上点的横坐标的取值范围是,B说法正确;由图象可知曲线的面积,C说法正确;因为曲线上点的横坐标的取值范围是,将,,,,,,分别代入,,解得曲线过点,,,,,,,,,,,,,,所以曲线上横纵坐标均为整数的点仅有4个,D说法错误;故选:BC第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分.12.血氧饱和度是呼吸循环的重要生理参数,人体的血氧饱和度正常范围是95%~100%,当血氧饱和度低于90%时,需要吸氧治疗,在环境模拟实验室的某段时间内,可以用指数模型描述血氧饱和度随着给氧时间(单位:小时)的变化而变化的规律,其中为初始血氧饱和度,为参数.已知,给氧1小时后,血氧饱和度为80%.若使得血氧饱和度达到90%,则至少还需要的给氧时间为小时.(精确到0.1,参考数据:,)【答案】0.5【分析】依据题给条件列出关于时间的方程,解之即可求得给氧时间至少还需要的小时数.【详解】设使得血氧饱和度达到正常值,给氧时间至少还需要小时,由题意可得,,所以,两边同时取自然对数得,,则,则给氧时间至少还需要小时.故答案为:13.已知,函数在区间上单调递减,则的最大值为.【答案】【分析】利用整体法即可结合余弦函数的单调性得求解.【详解】已知,,所以因为函数在上单调递减,而函数在上单调递减,所以由此可得不等式组,解得则的最大值为故答案为:14.若对任意正数x恒成立,则实数a的取值范围为.【答案】【分析】整理可得,同构结合的单调性分析可得,换元令,可得,构建,利用导数求其最值,即可得结果.【详解】因为,且,可得,整理可得,构建又因为在内单调递增,可得在内单调递增,可得,且,整理可得,令,可得,构建,则,令,解得;令,解得;可知在内单调递增,则内单调递减,则,可得,即,所以实数a的取值范围为.故答案为:.【点睛】方法点睛:两招破解不等式的恒成立问题1.分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.2.函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在中,内角A,B,C的对边分别为a,b,c,且.(1)求角C的大小;(2)延长BC到D,使得,且,求的面积.【答案】(1)(2)【分析】(1)结合已知利用正弦定理得,然后利用余弦定理求得,再根据角的范围即可求解.(2)根据题目条件及同角三角函数关系得,再求得,再结合(1)中,从而求出,最后代入三角形面积公式求解即可.【详解】(1)因为,由正弦定理得.所以设,,则,,由余弦定理得,又,所以.(2),解得,结合,则,由(1)知,则,则,因为由(1)知,则,则.16.(15分)已知椭圆的离心率为,过坐标原点和点的直线与椭圆交于两点,且.(1)求椭圆的方程;(2)直线与交于两点(在轴的同侧),分别是椭圆的左,右焦点,当时,求四边形面积的最大值.【答案】(1);(2)2.【分析】(1)利用给定的离心率可得,化简椭圆方程,并求出直线与椭圆方程联立,利用给定弦长求出即可.(2)延长交于点,由椭圆对称性可得关于原点对称,将四边形面积转化为求解.【详解】(1)由椭圆的离心率为,得,则,椭圆方程化为,直线的斜率,其方程为,由椭圆对称性,不妨设点,由,解得,因此,解得,所以椭圆的方程为.(2)如图,延长交于点,由(1)知,设,设的方程为,由消去得,则,设与的距离为,四边形的面积为,由及椭圆的对称性知,点与点关于原点对称,则又当且仅当,即时,等号成立,所以四边形面积的最大值为2.17.(15分)某地市场监管部门对当地一食品厂生产的水果罐头开展固形物含量抽样检验,按照国家标准规定,在一瓶水果罐头中,固形物含量不低于为优级品,固形物含量低于且不低于为一级品,固形物含量低于为二级品或不合格品.(1)现有瓶水果罐头,已知其中瓶为优级品,瓶为一级品.(ⅰ)若每次从中随机取出瓶,取出的罐头不放回,求在第次抽到优级品的条件下,第次抽到一级品的概率;(ⅱ)对这瓶罐头依次进行检验,每次检验后不放回,直到区分出瓶罐头的等级时终止检验,记检验次数为,求随机变量的分布列与期望;(2)已知该食品厂生产的水果罐头优级品率为,且各件产品是否为优级品相互独立,若在次独立重复抽检中,至少有次抽到优级品的概率不小于(约为),求的最小值.【答案】(1)(ⅰ);(ⅱ)分布列见解析,(2)【分析】(1)(ⅰ)设第次抽到优级品为事件,第次抽到一级品为事件,利用条件概率公式可求得的值;(ii)由题意可知,的取值可能为、、、,计算出随机变量在不同取值下的概率,可得出随机变量的分布列,进而可求得的值;(2)设在次抽检中至少有次抽到优级品的概率为,利用独立重复试验的概率公式可求出的表达式,利用导数分析函数的单调性,即可得出的最小值.【详解】(1)(ⅰ)设第次抽到优级品为事件,第次抽
信息必刷卷05(新高考Ⅰ卷)解析版
2025-04-22
·
20页
·
1.3 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片