南宁市2023届高中毕业班第一次适应性测试数学(文科)答案一、选择题:1.【答案】C【解析】∵A{xN|1x3}{0,1,2,3},∴AB{0,1,2,3,4},故选C.2.【答案】A3i3i1i24i【解析】由题意z1i3i,可变形为z12i,1i1i1i2则复数z12i,故选A.3.【答案】B【解析】5件产品中的2件次品记为a,b,3件合格品记为A,B,C,“从这5件产品中任取2件”,则该试验的样本空间Ω={(a,b),(a,A),(a,B),(a,C),(b,A),(b,B),(b,C),(A,B),(A,C),(B,C)},n(A)6即n()10.设事件A=“恰有一件次品”,则n(A)6,故P(A)0.6.n()104.【答案】B22【解析】sin1cos1cos2cos1,cos2cos20,(cos1)(cos2)0,cos1或cos2(舍)3又sincos1.25.【答案】D【解析】对于A,f(x)tanx为奇函数,在定义域内不单调,不符合题意,A错误.1对于B,f(x),定义域为(,0)(0,),f(x)f(x),所以f(x)为奇函数,在定义域x内不单调,B错误.对于C,f(x)xcosx,f(x)xcos(x)xcosxf(x),故函数f(x)xcosx不是奇函数,不符合题意C,错误.故选D.6.【答案】B【解析】符合题目要求的分类方法共:“甲3张乙1张”,“甲2张乙2张”,“甲1张乙3张”,三类①“甲3张乙1张”的基本事件为:甲123乙4;甲124乙3,甲134乙2,甲234乙1,共4类;②“甲2张乙2张”的基本事件为:甲12乙34;甲13乙24,甲14乙23,甲23乙14,甲24乙13,甲33乙12,共6类;③“甲1张乙3张”的基本事件为:乙123甲4;乙124甲3,乙134甲2,乙234甲1,共4类;故选B.7.【答案】B【解析】已知圆锥的侧面展开图为半径是3的扇形,如图,一只蚂蚁从A点出发绕着圆锥的侧面爬行一圈回到点A的最短距离为AA,设ASA,2圆锥底面周长为2,所以AA32所以,在SAA中,由3SASA3,得AASA2SA22SASAcos13232233()332故选:B.文数答案第1页共10页8.【答案】C【解析】设报告厅的座位从第排到第排各排的座位数依次排成一列构成数列其120,,an,前项和为根据题意数列是一个公差为的等差数列且nSn.,and2,a1041,故a1a109d411823.20(201)由S20a2840,因此,则该报告厅总有座位数为840个座位.故选C.20129.【答案】Bπ4【解析】已知sin,65πππ2π167cos2cos2cos212sin12,33662525故选B.10.【答案】D【解析】由f(x)x2,得f(x)2x,则f(1)2,又f(1)1,所以函数f(x)x2的图象在x1处的切线方程为y12(x1),即y2x1.ex设y2x1与函数g(x)的图象相切于点x,y,a00ex0xgx02,3ea31ee由g(x),可得解得x,ae2,故选D.x0ae0222gx2x1,0a011.【答案】A【解析】设A(x1,y1),B(x2,y2)则由于AB的斜率存在,设AB的斜率为k.ppA,B,都在x轴上方,由题意知k0,由抛物线定义AFx1,BFx222px1222则x1x24,由弦长公式AB1kxx,p12x42253所以AB1k2xx51k2k,故选A.124412.【答案】Clnx1lnx【解析】设f(x),则f(x),xx2当0xe时,f(x)0,函数单调递增,当xe时,f(x)0,函数单调递减,1故当xe时,函数取得最大值f(e),e3(2ln3)e2ln31因为af(),cf(3),bf(e),e233elnx故ba,bc,设函数ym的零点为x,x,且0xx,x1212则mx1lnx1,mx2lnx2,所以lnx2lnx1m(x2x1),lnx2lnx1lnx1x2m(x2x1)①,文数答案第2页共10页2(x1)(x1)2令g(x)lnx,x1,则g(x)0,x1x(x1)22(x1)故g(x)在(1,)单调递增,g(x)g(1)0,所以,当x1时,lnx,x1x2(21)x2x112从而ln,即(lnx2lnx1)②,xx2xxxx112121x122e①代入②得,x1x2e,令x,则x23,13故f(x1)f(x2)f(3),故ac,综上acb.故选:C.二、填空题:13.【答案】2【解析】由约束条件作出可行域如图所示,由目标函数z3xy可知当目标函数过点C(2,4)时,z取得最大值,最大值3242.π14.【答案】214【解析】函数f(x)cos(3x)的图象关于点,0对称,234ππ7π则有3kπ,kZ,于是得kπ,kZ,3227π显然kπ对于kZ是单调递增的,2ππ而k3或4时,||,所以||的最小值为.2215.【答案】e3PF1PF2PF1sinPFF【解析】由正弦定理得,所以22sinPF2F1sinPF1F2PF2sinPF1F2即PF12PF2,由双曲线的定义可得PF1PF2PF22a,所以PF22a,PF14a;222因为F1PF260,由余弦定理可得4c16a4a24a2acos60,c2整理可得4c212a2,所以e23,即e3.a216.【答案】225【解析】取的中点的中点连结正方体BB1G,A1B1H,GH,C1G,C1H,A1B,EG,HF.的棱长为为中点所以ABCDA1B1C1D12.E,F,G,H,EF//A1B,GH//A1B,所以EF//GH且EFGH2.因为为分别为的中点F,HAB,A1B1,所以且所以四边形为平行四边形FH//CC1,FHCC1,FHC1C,所以HC1//CF.因为面面HC1CD1EF,CFCD1EF,所以面HC1//CD1EF.文数答案第3页共10页同理可证:面HG//CD1EF.又面面GHHC1H,HC1C1GH,GHC1GH,所以面面C1HG//CD1EF.所以点在正方体表面上运动所形成的轨迹为三角形PC1HG.因为正方体ABCDABCD的棱长为2,所以22,1111HC1GC1215所以三角形的周长为.C1HGGHHC1GC1255225三、解答题:117.【答案】(1)a0.025,360人(2)2【解析】(1)依题意,成绩在[40,50]的概率为p10.1,成绩在[50,60)的概率为p20.15,成绩在的概率为成绩在的概率为60,70p30.15,70,80p40.3,成绩在的概率为成绩在的概率为80,90p5a10,[90,100]p60.05,故p5a1010.10.150.150.30.050.25,∴a0.025;······························································································3分该年级生涯规划大赛初赛成绩“优秀”等级的概率为pp5p60.3.4分该年级生涯规划大赛初赛成绩优秀”等级的学生人数为0.31200360人;············6分(2)在评为“优秀”等级的学生中采用分层抽样抽取6人,其中成绩在80,90应抽5人,成绩在[90,100]应抽1人,分别设为A1,A2,A3,A4,A5,和B,·················································································································7分从6人中随机抽取3人的基本事件为:A1,A2,B,A1,A3,B,A1,A4,B,A1,A5,B,A2,A3,B,A2,A4,B,A2,A5,B,A3,A4,B,A3,A5,B,A4,A5,B,A1,A2,A3,A1,A2,A4,A1,A2,A5,A1,A3,A4,A1,A3,A5,,A1,A4,A5,A2,A3,A4,A2,A3,A5A2,A4,A5,A3,A4,A5,共20种,·····································································································9分其中恰有1人成绩在[90,100]的基本事件为:A1,A2,B,A1,A3,B,A1,A4,B,A1,A5,B,A2,A3,B,A2,A4,B,A2,A5,B,A3,A4,B,A3,A5,B,A4,A5,B,共10种,···································································································10分文数答案第4页共10页101故所求概率为P.·············································································12分202π【答案】()B()(5,6]18.132【解析】(1)由(bc)(sinBsinC)(sinAsinC)a根据正弦定理可得(bc)(bc)(ac)a,·························································1分所以,a2c2b2ac,··················································································2分a2c2b21由余弦定理可得cosB,··························································3分2ac2∵B(0,π),································································································4分π因此B.·······························································································5分3(2)由余弦定理,得b2a2c22accosB,3a2c2ac,····································6分即a2c23acacb3由正弦定理得2,sinAsinCsinB3,·····························
广西南宁市2023届高中毕业班第一次适应性测试数学(文科)试题
2023-11-22
·
14页
·
2.1 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片