专题15集合专题(新定义)一、单选题1.(2023·全国·模拟预测)已知集合A,B满足,若,且,表示两个不同的“AB互衬对”,则满足题意的“AB互衬对”个数为( )A.9 B.4 C.27 D.8【答案】C【分析】直接列举可得.【详解】当时,集合B可以为;当时,集合B可以为;当时,集合B可以为;当时,集合B可以为;当时,集合B可以为;当时,集合B可以为;当时,集合B可以为;当时,集合B可以为.故满足题意的“AB互衬对”个数为27.故选:C2.(2023·全国·高三专题练习)定义集合且,已知集合,则( )A. B. C. D.【答案】C【分析】根据集合新定义即可求解.【详解】因为集合且,,所以故选:C3.(2023·全国·高三专题练习)定义集合,设集合,,则中元素的个数为( )A. B. C. D.【答案】B【分析】根据集合的新定义求得,从而确定正确答案.【详解】因为,,所以,故中元素的个数为.故选:B.4.(2021秋·陕西安康·高一校考阶段练习)设P,Q是两个非空集合,定义,若,,则中元素的个数是( )A.3 B.4 C.12 D.16【答案】C【分析】根据集合新定义,利用列举法写出集合的元素即可得答案.【详解】因为定义,且,,所以,中元素的个数是12,故选:C.5.(2020秋·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)设集合的全集为,定义一种运算,,若全集,,,则( )A. B.C. D.【答案】C【分析】解不等式求得集合M,求得,根据集合运算新定义,即可求得答案.【详解】由题意得,或,则,故选:C6.(2022秋·上海浦东新·高一校考期中)当一个非空数集G满足“如果a、,则、、,且时,”时,我们称G是一个数域.以下四个关于数域的命题中真命题的个数是( )①0是任何数域中的元素;②若数域G中有非零元素,则;③集合是一个数域;④有理数集Q是一个数域.A.1 B.2 C.3 D.4【答案】C【分析】根据数域定义逐一验证即可.【详解】由定义可知,,即0是任何数域中的元素,①正确;若域G中有非零元素a,则,所以,,…,,②正确;记则,但,故③错误;易知任意两个有理数的和差积仍是有理数,当分母不为0时,两个有理数的商仍为有理数,故④正确.故选:C7.(2022秋·北京房山·高一统考期中)已知U是非空数集,若非空集合A,B满足以下三个条件,则称为集合U的一种真分拆,并规定与为集合U的同一种真分拆.①;②;③A的元素个数不是A中的元素,B的元素个数不是B中的元素.则集合的真分拆的种数是( )A.4 B.8 C.10 D.15【答案】A【分析】理解真分拆的定义,采用列举法一一列出即可求解.【详解】根据真分拆定义,当集合只有一个元素时,有四个元素,此时只能是;当集合有两个元素时,有三个元素,此时包括、、,因为与为集合U的同一种真分拆,故只有四种真分拆.故选:A8.(2023春·湖南长沙·高三湖南师大附中校考阶段练习)若一个位正整数的所有数位上数字的次方和等于这个数本身,则称这个数是自恋数,已知所有一位正整数的自恋数组成集合,集合,则真子集个数为( )A.3 B.4 C.7 D.8【答案】C【分析】根据题中定义,结合集合交集的定义、真子集个数公式进行求解即可.【详解】由题中定义可知,而,所以,因此真子集个数为,故选:C9.(2023秋·上海徐汇·高一统考期末)若集合A同时具有以下三个性质:(1),;(2)若,则;(3)若且,则.则称A为“好集”.已知命题:①集合是好集;②对任意一个“好集”A,若,则.以下判断正确的是( )A.①和②均为真命题 B.①和②均为假命题C.①为真命题,②为假命题 D.①为假命题,②为真命题【答案】D【分析】根据“好集”的定义逐一判断即可.【详解】对于①,因为,而,所以集合不是好集,故①错误;对于②,因为集合为“好集”,所以,所以,故②正确,所以①为假命题,②为真命题.故选:D.10.(2022秋·上海浦东新·高一华师大二附中校考阶段练习)对于集合M,定义函数,对于两个集合,定义集合,,已知,,用表示有限集合中的元素个数,则对于任意集合,的最小值为( )A.5 B.4 C.3 D.2【答案】B【分析】先根据定义化简,,再根据文恩图确定+最小值取法,即得结果.【详解】解:因为,所以,,所以,,,所以,当元素个数最多且M中不含有A,B的元素之外的元素时,+最小,因为,所以当时,+最小,为,故选:B11.(2022秋·天津和平·高一天津市汇文中学校考阶段练习)若且就称A是伙件关系集合,集合的所有非空子集中,具有伙伴关系的集合个数为( )A.15 B.16 C.64 D.128【答案】A【分析】首先确定具有伙伴集合的元素有,,“和”,“和”四种可能,它们组成的非空子集的个数为即为所求.【详解】因为,;,;,;,;这样所求集合即由,,“和”,“和”这“四大”元素所组成的集合的非空子集.所以满足条件的集合的个数为,故选:A.12.(2022秋·宁夏石嘴山·高一石嘴山市第一中学校考阶段练习)已知集合,对它的非空子集,可将中的每一个元素都乘以再求和(如,可求得和为:),则对的所有非空子集执行上述求和操作,则这些和的总和是( )A.18 B.16 C.-18 D.-16【答案】D【分析】由已知,先求解出集合的所有非空子集分别出现的次数,然后,再根据范例直接计算总和即可.【详解】由已知,因为,那么每个元素在集合的所有非空子集分别出现个,则对于的所有非空子集执行乘以再求和的操作,则这些数的总和为:.故选:D.13.(2023·全国·高三专题练习)含有有限个元素的数集,定义“交替和”如下:把集合中的数按从小到大的顺序排列,然后从最大的数开始交替地加减各数.例如的交替和是;而的交替和是5,则集合的所有非空子集的交替和的总和为( )A.32 B.64 C.80 D.192【答案】D【分析】依次计算集合的所有非空子集的交替和的总和,然后归纳猜想出规律即可得.【详解】集合的所有非空子集的交替和的总和为,集合的所有非空子集的交替和的总和为,集合的所有非空子集的交替和的总和为,集合的所有非空子集的交替和的总和为,由此猜测集合的所有非空子集的交替和的总和为,证明如下:将集合中所有的子集分为两类:第一类,集合中无,第二类,集合中有这个元素,每类中集合的个数为我们在两类集合之间建立如下一一对应关系:第一类中集合对应着第二类中集合,此时这两个集合的交替和为,故集合的所有非空子集的交替和的总和为,所以.故选:D.14.(2022秋·北京海淀·高一人大附中校考期中)若集合A的所有子集中,任意子集的所有元素和均不相同,称A为互斥集.若,且A为互斥集,则的最大值为( )A. B. C. D.【答案】C【分析】由集合的新定义先确定集合,而要想取得最大值,则要最小,从而确定,即可求解【详解】因为,所以为又且为互斥集,所以为,要想取得最大值,则要最小,此时,不妨令,则,故选:C15.(2022·上海·高一专题练习)设X是一个集合,τ是一个以X的某些子集为元素的集合,且满足:①X属于τ,∅属于τ;②τ中任意多个元素的并集属于τ;③τ中有限个元素的交集属于τ.则称τ是集合X上的一个拓扑.已知集合X={a,b,c},对于下面给出的四个集合τ:①τ={∅,{a},{a,b},{a,c}};②τ={∅,{b},{c},{b,c},{a,b,c}};③τ={∅,{a,c},{b,c},{c},{a,b,c}};④τ={∅,{a},{c},{a,b,c}}.其中是集合X上的拓扑的集合τ的序号是( )A.② B.①③ C.②④ D.②③【答案】D【分析】利用集合X上的拓扑的3个要求,依次判断即可.【详解】解:①中由于{a,b}∪{a,c}={a,b,c}∉τ,故①不是集合X上的一个拓扑;②中满足拓扑集合的3个要求,故②是集合X上的一个拓扑;③中满足拓扑集合的3个要求,故③是集合X上的一个拓扑;④中{a}∪{c}={a,c}∉τ,故④不是集合X上的一个拓扑;因此集合X上的拓扑的集合τ的序号是②③,故选:D.16.(2022秋·上海浦东新·高一上海市建平中学校考开学考试)定义集合运算且称为集合与集合的差集;定义集合运算称为集合与集合的对称差,有以下4个命题:① ②③ ④则个命题中是真命题的是( )A.①② B.①②③ C.①②④ D.①②③④【答案】B【分析】利用题中定义可判断①的正误;利用韦恩图法可判断②④;利用题中定义与集合运算可判断③的正误.【详解】对于①,,①对;对于②,且且,同理,则,所以,表示的集合如下图中的阴影部分区域所示:同理也表示如上图阴影部分区域所示,故,②对;对于③,,③对;对于④,如下图所示:所以,,④错.故选:B.【点睛】关键点点睛:本题考查集合中的新定义问题,解题的关键在于利用韦恩图法来表示集合,利用数形结合思想来进行判断.二、多选题17.(2022秋·江苏苏州·高一星海实验中学校考期中)整数集中,被4除所得余数为的所有整数组成一个“类”,其中,记为,即,以下判断正确的是( )A. B.C. D.若,则整数,属于同一个类【答案】CD【分析】根据给定的定义,计算判断A,B;推理判断C,D作答.【详解】,,,即,而,因此,A不正确;,即,而,因此,B不正确;因任意一整数除以4,所得余数只能为0或1或2或3,即,反之,集合中任一数都是整数,即,所以,C正确;,不妨令,则,因,于是得,即,因此整数,属于同一个类,D正确.故选:CD18.(2022秋·山西运城·高一山西省运城中学校期中)1872年德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称“戴德金分割”),并把实数理论建立在严格的科学基础上,从而结束了无理数被认为“无理”的时代,也结束了数学史上的第一次大危机.将有理数集划分为两个非空的子集M与N,且满足,,M中的每一个元素都小于N中的每一个元素,则称为戴德金分割.试判断下列选项中,可能成立的是( )A.满足戴德金分割B.M没有最大元素,N有一个最小元素C.M没有最大元素,N没有最小元素D.M有一个最大元素,N有一个最小元素【答案】ABC【分析】根据戴德金分割的定义可判断A;举例判断B;结合A中例子可判断C;假设M有一个最大元素m,N有一个最小元素n,根据戴德金分割定义判断D.【详解】对于A,满足戴德金分割的定义,A正确;对于B,取,符合戴德金分割,M没有最大元素,N有一个最小元素,B正确;对于C,取满足戴德金分割的定义,M没有最大元素,N没有最小元素,C正确;对于D,假设M有一个最大元素m,N有一个最小元素n,根据戴德金分割定义,必有,则无法满足,D错误,故选:.19.(2022秋·四川眉山·高一校考阶段练习)给定集合,若对于任意,,有,且,则称集合A为闭集合,以下结论正确的是( )A.集合为闭集合;B.集合为闭集合;C.集合为闭集合;D.若集合为闭集合,则为闭集合.【答案】AC【分析】根据闭集合的定义和集合知识综合的问题,分别判断,且是否满足即可得到结论.【详解】对于A:按照闭集合的定义,故A正确;对于B:当时,.故不是闭集合.故B错误;对于C:由于任意两个3的倍数,它们的和、差仍是3的倍数,故是闭集合.故C正确;对于D:假设,.不妨取,但是,,则不是闭集合.故D错误.故选:AC三、填空题20.(2022秋·江苏常州·高一常州高级中学校考期中)设集合,若把集合的集合叫做集合的配集,则的配集有___________个.【答案】4【分析】直接按定义求出符合条件的集合,计算个数,得到答案.【详解】解:由题意,M可以是,,,,共4个.故答案为:4.21.(2023·全国·高三专题练习)对于非空集合,其所有元素的几何平均数记为,即.若非空数集满足下列两个条件:①A;②,则称为的一个“保均值真子集”,据此,集合的“保均值真子集”有__个.【答案】【分
高考数学专题15 集合专题(新定义)(解析版)
2023-11-15
·
19页
·
923.5 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片