2023年湖北省武汉市数学真题(解析版)

2023-12-06 · 31页 · 1.8 M

2023年武汉市初中毕业生学业考试数学试卷亲爱的同学:在你答题前,请认真阅读下面的注意事项.1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共6页,三大题,满分120分.考试用时120分钟.2.答题前,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和座位号,将条形码横贴在答题卡第1页右上“贴条形码区”.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B铅笔将“答题卡”上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.答在“试卷”上无效.4.答第Ⅱ卷(非选择题)时,答案用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在“试卷”上无效.5.认真阅读答题卡上的注意事项.预祝你取得优异成绩!第Ⅰ卷(选择题共30分)一、选择题(共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号涂黑.1.实数3的相反数是()A.3 B. C. D.【答案】D【解析】【分析】根据相反数的定义进行判断即可.【详解】解:实数3的相反数,故D正确.故选:D.【点睛】本题考查了相反数的定义,熟练掌握知识点,只有符号不同的两个数互为相反数,是解题关键.2.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B. C. D.【答案】C【解析】【分析】根据轴对称图形的概念即可解答.【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不合题意.故选:C.【点睛】本题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.掷两枚质地均匀的骰子,下列事件是随机事件的是()A.点数的和为1 B.点数的和为6C.点数的和大于12 D.点数的和小于13【答案】B【解析】【分析】根据事件发生的可能性大小判断即可.【详解】解:A、点数和为1,是不可能事件,不符合题意;B、点数和为6,是随机事件,符合题意;C、点数和大于12,是不可能事件,不符合题意;D、点数的和小于13,是必然事件,不符合题意.故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.计算的结果是()A B. C. D.【答案】D【解析】【分析】根据积的乘方与幂的乘方法则计算即可.【详解】解:,故选:D.【点睛】本题考查积的乘方与幂的乘方,熟练掌握积的乘方与幂的乘方运算法则是解题的关键.5.如图是由4个相同的小正方体组成的几何体,它的左视图是()A. B. C. D.【答案】A【解析】【分析】它的左视图,即从该几何体的左侧看到的是两列,左边一列两层,右边一列一层,因此选项A的图形符合题意.【详解】解:从该几何体的左侧看到的是两列,左边一列两层,右边一列一层,因此选项A的图形符合题意,故A正确.故选:A.【点睛】本题考查简单几何体的三视图,理解三视图的意义,明确三视图的形状是正确判断的前提.6.关于反比例函数,下列结论正确的是()A.图像位于第二、四象限B图像与坐标轴有公共点C.图像所在的每一个象限内,随的增大而减小D.图像经过点,则【答案】C【解析】【分析】根据反比例函数的性质逐项排查即可解答.【详解】解:A.的图像位于第一、三象限,故该选项不符合题意;B.的图像与坐标轴没有有公共点,故该选项不符合题意;C.的图像所在的每一个象限内,随的增大而减小,故该选项符合题意;D.由的图像经过点,则,计算得或,故该选项不符合题意.故选C.【点睛】本题主要考查反比例函数的性质,明确题意、正确利用反比例函数的性质是解答本题的关键.7.某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A. B. C. D.【答案】C【解析】【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为,画出树状图,找到所有情况数和满足要求的情况数,利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为,画树状图如下:由树状图可知共有12种等可能情况,他选择“100米”与“400米”两个项目即选择C和D的情况数共有2种,∴选择“100米”与“400米”两个项目的概率为,故选:C【点睛】此题考查了树状图或列表法求概率,正确画出树状图或列表,找到所有等可能情况数和满足要求情况数是解题的关键.8.已知,计算的值是()A.1 B. C.2 D.【答案】A【解析】【分析】根据分式的加减运算以及乘除运算法则进行化简,然后把代入原式即可求出答案.【详解】解:===,∵,∴,∴原式==1,故选A.【点睛】本题考查分式的混合运算及求值.解题的关键是熟练运用分式的加减运算以及乘除运算法则.9.如图,在四边形中,,以为圆心,为半径的弧恰好与相切,切点为.若,则的值是()A. B. C. D.【答案】B【解析】【分析】作延长线于点,连接,根据圆的基本性质以及切线的性质,分别利用勾股定理求解在和,最终得到,即可根据正弦函数的定义求解.【详解】解:如图所示,作延长线于点,连接,∵,,∴,∴四边形为矩形,,,∴为的切线,由题意,为的切线,∴,,∵,∴设,,,则,,在中,,在中,,∵,∴,解得:或(不合题意,舍去),∴,∴,∴,故选:B.【点睛】本题考查圆的切线的判定与性质,解直角三角形,以及正弦函数的定义等,综合性较强,熟练运用圆的相关性质以及切线的性质等是解题关键.10.皮克定理是格点几何学中的一个重要定理,它揭示了以格点为顶点的多边形的面积,其中分别表示这个多边形内部与边界上的格点个数.在平面直角坐标系中,横、纵坐标都是整数的点为格点.已知,,则内部的格点个数是()A.266 B.270 C.271 D.285【答案】C【解析】【分析】首先根据题意画出图形,然后求出的面积和边界上的格点个数,然后代入求解即可.【详解】如图所示,∵,,∴,∵上有31个格点,上的格点有,,,,,,,,,,共10个格点,上的格点有,,,,,,,,,,,,,,,,,,,共19个格点,∴边界上的格点个数,∵,∴,∴解得.∴内部的格点个数是271.故选:C.【点睛】本题主要考查了坐标与图形的性质,解决问题的关键是掌握数形结合的数学思想.第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.11.写出一个小于4的正无理数是________.【答案】(答案不唯一)【解析】【分析】根据无理数估算的方法求解即可.【详解】解:∵,∴.故答案为:(答案不唯一).【点睛】本题主要考查了无理数的估算,准确计算是解题的关键.12.新时代十年来,我国建成世界上规模最大的社会保障体系.其中基本医疗保险的参保人数由5.4亿增加到13.6亿,参保率稳定在95%.将数据13.6亿用科学记数法表示为的形式,则的值是________(备注:1亿=100000000).【答案】9【解析】【分析】将13.6亿=写成(,n为整数)的形式即可.【详解】解:13.6亿==.故答案为9.【点睛】本题主要考查了科学记数法,将原数写成(,n为整数)的形式,确定a和n的值是解答本题的关键.13.如图,将的∠AOB按图摆放在一把刻度尺上,顶点O与尺下沿的端点重合,OA与尺下沿重合,OB与尺上沿的交点B在尺上的读数为2cm,若按相同的方式将的∠AOC放置在该尺上,则OC与尺上沿的交点C在尺上的读数约为____cm(结果精确到0.1cm,参考数据:,,)【答案】2.7.【解析】【详解】解直角三角形的应用,等腰直角三角形的性质,矩形的性质,锐角三角函数定义,特殊角的三角函数值.过点B作BD⊥OA于D,过点C作CE⊥OA于E.在△BOD中,∠BDO=90°,∠DOB=45°,∴BD=OD=2cm.∴CE=BD=2cm.在△COE中,∠CEO=90°,∠COE=37°,∵,∴OE≈2.7cm.∴OC与尺上沿的交点C在尺上的读数约为2.7cm.14.我国古代数学经典著作《九章算术》记载:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”如图是善行者与不善行者行走路程(单位:步)关于善行者的行走时间的函数图象,则两图象交点的纵坐标是________.【答案】【解析】【分析】设图象交点的纵坐标是m,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的.根据速度关系列出方程,解方程并检验即可得到答案.【详解】解:设图象交点的纵坐标是m,由“今有善行者行一百步,不善行者行六十步.”可知不善行者的速度是善行者速度的.∴,解得,经检验是方程的根且符合题意,∴两图象交点的纵坐标是.故答案为:【点睛】此题考查了从函数图象获取信息、列分式方程解决实际问题,数形结合和准确计算是解题的关键.15.抛物线(是常数,)经过三点,且.下列四个结论:①;②;③当时,若点在该抛物线上,则;④若关于的一元二次方程有两个相等的实数根,则.其中正确的是________(填写序号).【答案】②③④【解析】【分析】①根据图象经过,,且抛物线与x轴的一个交点一定在或的右侧,判断出抛物线的开口向下,,再把代入得,即可判断①错误;②先得出抛物线的对称轴在直线的右侧,得出抛物线的顶点在点的右侧,得出,根据,即可得出,即可判断②正确;③先得出抛物线对称轴在直线的右侧,得出到对称轴的距离大于到对称轴的距离,根据,抛物线开口向下,距离抛物线越近的函数值越大,即可得出③正确;④根据方程有两个相等的实数解,得出,把代入得,即,求出,根据根与系数的关系得出,即,根据,得出,求出m的取值范围,即可判断④正确.【详解】解:①图象经过,,即抛物线与y轴的负半轴有交点,如果抛物线的开口向上,则抛物线与x轴的两个交点都在的左侧,∵中,∴抛物线与x轴的一个交点一定在或的右侧,∴抛物线的开口一定向下,即,把代入得,即,∵,,∴,故①错误;②∵,,,∴,∴方程的两个根的积大于0,即,∵,∴,∴,即抛物线的对称轴在直线的右侧,∴抛物线的顶点在点的右侧,∴,∵,∴,故②正确;③∵,∴当时,,∴抛物线对称轴在直线的右侧,∴到对称轴的距离大于到对称轴的距离,∵,抛物线开口向下,∴距离抛物线越近的函数值越大,∴,故③正确;④方程可变为,∵方程有两个相等的实数解,∴,∵把代入得,即,∴,即,∴,∴,即,∵在抛物线上,∴,n为方程的两个根,∴,∴,∵,∴,∴,故④正确;综上分析可知,正确的是②③④.故答案为:②③④.【点睛】本题主要考查了二次函数的图象和性质,解题的关键是熟练掌握二次函数的性质,根据已知条件判断得出抛物线开口向下.16.如图,平分等边的面积,折叠得到分别与相交于两点.若,用含的式子表示的长是________.【答案】【解析】【分析】先根据折叠的性质可得,,从而可得,再根据相似三角形的判定可证,根据相似三角形的性质可得,,然后将两个等式相加即可得.【详解】解:是等边三角形,,∵折叠得到,,,,平分等边的面积,,,又,,,,,,解得或(不符合题意,舍去),故答案为:.【点睛】本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.三、解答题(共8小题,共72分)下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形.17.解不等式组请按下列步骤完成解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组解集是________.【答案】(1)(2)(3)见解析(4)【解析】【分析】(1)直接解不等式①即可解答;(

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐