专题10双曲线中的向量问题一、单选题1.过双曲线的右焦点作倾斜角为的直线交双曲线右支于,两点,若,则双曲线的离心率为()A. B. C.2 D.2.已知双曲线的左右焦点分别为,,过的直线交双曲线C的左支于P,Q两点,若,且的周长为,则双曲线C的离心率为()A. B. C. D.3.、分别为双曲线的左、右焦点,过的直线与的左、右两支曲线分别交于、两点,若,则()A. B. C. D.4.已知为坐标原点,双曲线:的右焦点为,直线过点且与的右支交于,两点,若,,则直线的斜率为()A. B. C. D.5.已知抛物线与双曲线有共同的焦点,为坐标原点,在轴上方且在双曲线上,则的最小值为()A. B. C. D.6.已知椭圆与双曲线有相同的左焦点、右焦点,点是两曲线的一个交点,且.过作倾斜角为45°的直线交于,两点(点在轴的上方),且,则的值为()A. B. C. D.7.经过双曲线的右焦点作倾斜角为45°的直线,交双曲线于,两点,设为坐标原点,则等于()A. B.1 C.2 D.8.已知分别是双曲线的左右焦点,为轴上一点,为左支上一点,若,且周长最小值为实轴长的3倍,则双曲线的离心率为()A. B. C. D.二、多选题9.已知双曲线,,O为坐标原点,M为双曲线上任意一点,则的值可以是()A. B. C. D.10.已知双曲线且成等差数列,过双曲线的右焦点F(c,0)的直线l与双曲线C的右支相交于A,B两点,,则直线l的斜率的可能取值为()A. B.- C. D.-11.已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,下列结论正确的是()A.椭圆的离心率 B.双曲线的离心率C.椭圆上不存在点使得 D.双曲线上存在点使得12.已知双曲线的右顶点、右焦点分别为、,过点的直线与的一条渐近线交于点,直线与的一个交点为,,且,则下列结论正确的是()A.直线与轴垂直 B.的离心率为C.的渐近线方程为 D.(其中为坐标原点)三、填空题13.、是双曲线的左、右焦点,过点的直线与的左、右两支曲线分别交于、两点,若,则______.14.已知双曲线,右焦点为,点是直线在第一象限上的动点,直线与双曲线的一条渐近线在第一象限上的交点为,若,则__________.15.已知为椭圆和双曲线的公共顶点,分别为双曲线和椭圆上不同于两点的动点,且有,设直线、、、的斜率分别为,则______.16.已知点在双曲线上,点满足(),且,,则的最大值为________四、解答题17.点是双曲线E:上一点,M,N分别是双曲线E的左、右顶点,直线PM,PN的斜率之积为.(1)求的值;(2)过双曲线E的右焦点且斜率为1的直线交双曲线于A,B两点,O为坐标原点,C为双曲线上的一点,满足,求的值.18.设双曲线C:与直线l:相交于两个不同的点A、B.(1)求实数a的取值范围;(2)设直线l与y轴的交点为P,若,求a的值.19.已知抛物线的焦点为,圆,,分别是抛物线和圆上的动点,当点在第一象限且轴时,的最大值为4.(1)求抛物线的方程;(2)已知过点的直线交抛物线于,两点,且直线,设直线与抛物线的另一个交点为,求的最小值.20.双曲线:的顶点与椭圆:长轴的两个端点重合,且一条渐近线的方程为.(1)求双曲线的方程;(2)过双曲线右焦点作直线与分别交于左右两支上的点,,又过原点作直线,使,且与双曲线分别交于左右两支上的点,.是否存在定值,使得?若存在,请求的值;若不存在,请说明理由.21.已知双曲线的离心率为,点在上.(1)求双曲线的方程;(2)设过点的直线l与曲线交于M,N两点,问在x轴上是否存在定点Q,使得为常数?若存在,求出Q点坐标及此常数的值,若不存在,说明理由.22.已知常数,向量,,经过定点且以为方向向量的直线与经过定点且以为方向向量的直线交于点,其中.(1)求点的轨迹的方程;(2)若,过的直线交曲线于,两点,求的取值范围.
高考数学专题10 双曲线中的向量问题-高考数学圆锥曲线重难点专题突破(全国通用)(原卷版)
2023-11-18
·
6页
·
320.2 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片