第十三章轴对称13.1.2线段的垂直平分线的性质一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知线段AB和点C,D,且CA=CB,DA=DB,那么直线CD是线段AB的A.垂线 B.平行线C.垂直平分线 D.过中点的直线【答案】C2.点P是△ABC中边AB的垂直平分线上的点,则一定有A.PA=PB B.PA=PCC.PB=PC D.点P到∠ACB的两边的距离相等【答案】A【解析】∵点P在AB的垂直平分线上,∴PA=PB,故选A.3.下列说法错误的是A.E,D是线段AB的垂直平分线上的两点,则AD=BD,AE=BEB.若AD=BD,AE=BE,则直线DE是线段AB的垂直平分线C.若PA=PB,则点P在线段AB的垂直平分线上D.若PA=PB,则过点P的直线是线段AB的垂直平分线【答案】D【解析】A、∵E是线段AB的垂直平分线上的点,∴AE=BE.同理AD=BD.故A正确;B、若AD=BD,∴D在AB的垂直平分线上.同理E在AB的垂直平分线上.∴直线DE是线段AB的垂直平分线.故B正确;C、若PA=PB,则点P在线段AB的垂直平分线上,故C正确;D、若PA=PB,则点P在线段AB的垂直平分线上.但过点P的直线有无数条,不能确定过点P的直线是线段AB的垂直平分线.故D错误.故选D.4.关于线段的垂直平分线有以下说法:①一条线段的垂直平分线的垂足,也是这条线段的中点;②线段的垂直平分线是一条直线;③一条线段的垂直平分线是这条线段的唯一对称轴.其中,正确的说法有A.1个 B.2个 C.3个 D.4个【答案】B5.如图,AC=AD,BC=BD,那么下列判断正确的是A.CD垂直平分AB B.AB垂直平分CDC.CD平分∠ACB D.∠ACB=∠ADB=90°【答案】B【解析】∵AC=AD,∴点A在线段CD的垂直平分线上,∵BC=BD,∴点B在线段CD的垂直平分线上,∴AB垂直平分CD.故选B.6.下面给出两个结论:①如图①,若PA=PB,QA=QB,则PQ垂直平分AB.②如图②,若点P到OA,OB的垂线段PC,PD相等,则OP平分∠AOB,其中A.只有①正确 B.只有②正确C.①②都正确 D.①②都不正确【答案】C7.如图,在Rt△ABC中,∠ACB=90°,BC的中垂线交斜边AB于D,图中相等的线段有A.1组 B.2组 C.3组 D.4组【答案】D【解析】∵BC的中垂线交斜边AB于D,CD=BD,CE=BE,∴∠B=∠BCD,又∠A+∠B=90°,∠BCD+∠ACD=90°,∴∠A=∠ACD,∴AD=CD,∴AD=BD,共4组.故选D.二、填空题:请将答案填在题中横线上.8.如图,已知AD是线段BC的垂直平分线,则AB=__________.【答案】AC【解析】∵AD是线段BC的垂直平分线,∴AB=AC,故答案为:AC.9.如图,AD⊥BC于D,BD=CD,则AB=AC,理由__________.【答案】线段的垂直平分线上的点到线段两端点的距离相等三、解答题:解答应写出文字说明、证明过程或演算步骤.10.如图所示,一辆汽车在笔直的公路AB上由A向B行驶,M,N分别是位于公路AB两侧的村庄,当汽车行驶到哪个位置时,与村庄M,N的距离相等.【解析】(1)连接MN;(2)作线段MN的垂直平分线l,交直线AB于C点,则C点即为所求.11.如图所示,AB=AC,BM=CM,直线AM是线段BC的垂直平分线吗?【解析】是.理由:∵AB=AC,BM=CM,∴点A、M都在线段BC的垂直平分线上.根据“两点确定一条直线”知,直线AM是线段BC的垂直平分线.12.如图,AB=AC,DB=DC,E是AD延长线上一点,求证:BE=CE.13.如图,已知AE=CE,BD⊥AC.求证:AB+CD=AD+BC.【解析】∵AE=CE,BD⊥AC,∴BD是线段AC的垂直平分线,∴AB=BC,AD=CD,∴AB+CD=AD+BC.14.(1)在△ABC中画出AB边的垂直平分线与BC边的垂直平分线.(2)设所画的两条垂直平分线相交于点O,则由点O在AB的垂直平分线上,可以知道哪两条线段相等?(3)由点O在BC的垂直平分线上,又可以得到什么结论?(4)由(2)与(3)的结论,在线段的相等关系方面,你有什么新的发现?请先用等式表示,再用文字加以叙述.
13.1.2 线段的垂直平分线的性质-八年级数学人教版(上)(解析版)
2023-12-20
·
6页
·
369 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片