八年级(上)期末数学试卷 一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.如果最简二次根式与是同类二次根式,那么x的值是( )A.﹣1 B.0 C.1 D.22.下列代数式中,+1的一个有理化因式是( )A. B. C.+1 D.﹣13.如果关于x的方程ax2﹣3x+2=0是一元二次方程,那么a取值范围是( )A.a>0 B.a≥0 C.a=1 D.a≠04.下面说法正确的是( )A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系5.下列条件中不能判定两个直角三角形全等的是( )A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等6.如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是( )A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC 二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算:= .8.计算:= .9.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是 .10.在实数范围内分解因式x2﹣4x﹣1= .11.函数的定义域是 .12.如果正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是 .13.命题“全等三角形的周长相等”的逆命题是 .14.经过已知点A和点B的圆的圆心的轨迹是 .15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于 .16.如果在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= .17.边长为5的等边三角形的面积是 .18.已知在△AOB中,∠B=90°,AB=OB,点O的坐标为(0,0),点A的坐标为(0,4),点B在第一象限内,将这个三角形绕原点O逆时针旋转75°后,那么旋转后点B的坐标为 . 三、解答题(本大题共8题,满分58分)[将下列各题的解答过程,做在答题纸的相应位置上]19.计算:.20.解方程:(x﹣)2+4x=0.21.已知关于x的一元二次方程x2+(2m+1)x+(m﹣2)2=0有一个根为0,求这个方程根的判别式的值.22.如图,在△ABC中,∠C=90°,AC=6cm,AB=10cm,点D在边AC上,且点D到边AB和边BC的距离相等.(1)作图:在AC上求作点D;(保留作图痕迹,不写作法)(2)求CD的长.23.如图,在直角坐标系xOy中,反比例函数图象与直线y=x相交于横坐标为2的点A.(1)求反比例函数的解析式;(2)如果点B在直线y=x上,点C在反比例函数图象上,BC∥x轴,BC=3,且BC在点A上方,求点B的坐标.24.如图,已知在△ABC中,∠ABC=90°,点E是AC的中点,联结BE,过点C作CD∥BE,且∠ADC=90°,在DC取点F,使DF=BE,分别联结BD、EF.(1)求证:DE=BE;(2)求证:EF垂直平分BD.25.为改善奉贤交通状况,使奉贤区融入上海1小时交通圈内,上海轨交5号线南延伸工程于2014年启动,并将于2017年年底通车.(1)某施工队负责地铁沿线的修路工程,原计划每周修2000米,但由于设备故障第一周少修了20%,从第二周起工程队增加了工人和设备,加快了速度,第三周修了2704米,求该工程队第二周、第三周平均每周的增长率.(2)轨交五号线从西渡站到南桥新城站,行驶过程中的路程y(千米)与时间x(分钟)之间的函数图象如图所示.请根据图象解决下列问题:①求y关于x的函数关系式并写出定义域;②轨交五号线从西渡站到南桥新城站沿途经过奉浦站,如果它从西渡站到奉浦站的路程是4千米,那么轨交五号线从西渡站到奉浦站需要多少时间?26.如图,已知△ABC中,∠ACB=90°,∠ABC=30°,AC=2,点P是边AB上的一个动点,以点P为圆心,PB的长为半径画弧,交射线BC于点D,射线PD交射线AC于点E.(1)当点D与点C重合时,求PB的长;(2)当点E在AC的延长线上时,设PB=x,CE=y,求y关于x的函数关系式,并写出定义域;(3)当△PAD是直角三角形时,求PB的长. 八年级(上)期末数学试卷参考答案与试题解析 一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.如果最简二次根式与是同类二次根式,那么x的值是( )A.﹣1 B.0 C.1 D.2【考点】同类二次根式.【分析】根据题意,它们的被开方数相同,列出方程求解即可.【解答】解:由最简二次根式与是同类二次根式,得x+2=3x,解得x=1.故选:C. 2.下列代数式中,+1的一个有理化因式是( )A. B. C.+1 D.﹣1【考点】分母有理化.【分析】根据有理化因式的定义进行求解即可.两个含有根式的代数式相乘,如果它们的积不含有根式,那么这两个代数式相互叫做有理化因式.【解答】解:∵由平方差公式,()()=x﹣1,∴的有理化因式是,故选D. 3.如果关于x的方程ax2﹣3x+2=0是一元二次方程,那么a取值范围是( )A.a>0 B.a≥0 C.a=1 D.a≠0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.【解答】解:依题意得:a≠0.故选:D. 4.下面说法正确的是( )A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【考点】反比例函数的定义;正比例函数的定义.【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】解:A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;故选:C. 5.下列条件中不能判定两个直角三角形全等的是( )A.两个锐角分别对应相等B.两条直角边分别对应相等C.一条直角边和斜边分别对应相等D.一个锐角和一条斜边分别对应相等【考点】直角三角形全等的判定.【分析】根据三角形全等的判定对各选项分析判断后利用排除法求解.【解答】解:A、两个锐角对应相等,不能说明两三角形能够完全重合,符合题意;B、可以利用边角边判定两三角形全等,不符合题意;C、可以利用边角边或HL判定两三角形全等,不符合题意;D、可以利用角角边判定两三角形全等,不符合题意.故选:A. 6.如图,已知△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,则下列结论正确的是( )A.CM=BC B.CB=AB C.∠ACM=30° D.CH•AB=AC•BC【考点】三角形的角平分线、中线和高.【分析】由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,然后由相似三角形的对应边成比例,证得CH2=AH•HB;由△ABC中,∠ACB=90°,CM是斜边AB上中线,根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB.【解答】解:△ABC中,∠ACB=90°,CM分别是斜边AB上的中线,可得:CM=AM=MB,但不能得出CM=BC,故A错误;根据直角三角形斜边的中线等于斜边的一半,即可得CM=AB,但不能得出CB=AB,故B错误;△ABC中,∠ACB=90°,CH、CM分别是斜边AB上的高和中线,无法得出∠ACM=30°,故C错误;由△ABC中,∠ACB=90°,利用勾股定理即可求得AB2=AC2+BC2;由△ABC中,∠ACB=90°,CH是高,易证得△ACH∽△CHB,根据相似三角形的对应边成比例得出CH•AB=AC•BC,故D正确;故选D 二、填空题(本题共12小题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.计算:= 2 .【考点】算术平方根.【分析】根据算术平方根的性质进行化简,即=|a|.【解答】解:==2.故答案为2. 8.计算:= 2a .【考点】二次根式的加减法.【分析】先化简二次根式,再作加法计算.【解答】解:原式=a+a=2a,故答案为:2a. 9.如果关于x的一元二次方程x2+4x﹣m=0没有实数根,那么m的取值范围是 m<﹣4 .【考点】根的判别式.【分析】根据关于x的一元二次方程x2+4x﹣m=0没有实数根,得出△=16﹣4(﹣m)<0,从而求出m的取值范围.【解答】解:∵一元二次方程x2+4x﹣m=0没有实数根,∴△=16﹣4(﹣m)<0,∴m<﹣4,故答案为m<﹣4. 10.在实数范围内分解因式x2﹣4x﹣1= (x﹣2+)(x﹣2﹣) .【考点】实数范围内分解因式.【分析】根据完全平方公式配方,然后再把5写成()2利用平方差公式继续分解因式.【解答】解:原式=x2﹣4x+4﹣5=(x﹣2)2﹣5=(x﹣2+)(x﹣2﹣).故答案为:(x﹣2+)(x﹣2﹣). 11.函数的定义域是 x>﹣2 .【考点】函数自变量的取值范围.【分析】根据当表达式的分母中含有自变量时,自变量取值要使分母不为零,求解即可.【解答】解:由题意得:>0,即:x+2>0,解得:x>﹣2.故答案为:x>﹣2. 12.如果正比例函数y=(k﹣3)x的图象经过第一、三象限,那么k的取值范围是 k>3 .【考点】正比例函数的性质.【分析】根据正比例函数y=(k﹣3)x的图象经过第一、三象限得出k的取值范围即可.【解答】解:因为正比例函数y=(k﹣3)x的图象经过第一、三象限,所以k﹣3>0,解得:k>3,故答案为:k>3. 13.命题“全等三角形的周长相等”的逆命题是 周长相等的三角形是全等三角形 .【考点】命题与定理.【分析】交换原命题的题设和结论即可得到原命题的逆命题.【解答】解:命题“全等三角形的周长相等”的逆命题是周长相等的三角形是全等三角形,故答案为:周长相等的三角形是全等三角形、 14.经过已知点A和点B的圆的圆心的轨迹是 线段AB的垂直平分线 .【考点】轨迹.【分析】要求作经过已知点A和点B的圆的圆心,则圆心应满足到点A和点B的距离相等,从而根据线段的垂直平分线性质即可求解.【解答】解:根据同圆的半径相等,则圆心应满足到点A和点B的距离相等,即经过已知点A和点B的圆的圆心的轨迹是线段AB的垂直平分线.故答案为线段AB的垂直平分线. 15.已知直角坐标平面内两点A(﹣3,1)和B(1,2),那么A、B两点间的距离等于 .【考点】两点间的距离公式.【分析】根据两点间的距离公式,可以得到问题的答案.【解答】解:∵直角坐标平面内两点A(﹣3,1)和B(1,2),∴A、B两点间的距离为:=.故答案为. 16.如果在四边形ABCD中,∠B=60°,AB=BC=13,AD=12,DC=5,那么∠ADC= 90° .【考点】勾股定理的逆定理;等边三角形的判定与性质.【分析】根据等边三角形的判定得出△ABC是等边三角形,求出AC=13,根据勾股定理的逆定理推出即可.【解答】解:连接AC,∵∠B=60°,AB=BC=13,∴△ABC是等边三角形,∴AC=13,∵AD=12,CD=5,∴AD2+CD2=AC2,∴∠AC=90°,故答案为:90°. 17.边长为5的等边三角形的面积是 .【考点】等边三角
02 【人教版】八年级上期末数学试卷(含答案)
2023-12-20
·
17页
·
304 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片