人教版八年级数学上册13.3.2.2《等边三角形的判定》同步训练习题

2023-12-20 · 17页 · 237.9 K

人教版八年级数学上册13.3.2.2《等边三角形的判定同步训练习题(学生版)一.选择题1.(2014秋•北流市期末)下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形2.(2014秋•瑞金市期末)一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是( )2·1·c·n·j·yA.等腰三角形 B.直角三角形C.等腰直角三角形 D.等边三角形3.(2014春•禅城区校级月考)在△ABC中,AB=AC,若∠A=60°,则△ABC为( )A.钝角三角形 B.直角三角形C.等边三角形 D.等腰不等边三角形4.(2013春•射洪县期末)已知△ABC中,三边a,b,c满足|b﹣c|+(a﹣b)2=0,则∠A等于( )21*cnjy*comA.60° B.45° C.90° D.不能确定5.(2014•祁阳县校级模拟)等边三角形的边长为4cm,它的高为( )A. B. C. D.6.(2013秋•渭城区校级期末)在△ABC中,∠A=∠B=∠C,过点B作BD⊥AC于D,已知△ABC的周长为m,则AD=( )A. B. C. D.7.(2013秋•中江县期HYPERLINKhttp://www.21cnjy.com末)如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是( )A.8+2a B.8+a C.6+a D.6+2a8.(2013秋•奉贤HYPERLINKhttp://www.21cnjy.com区校级期末)如图,在Rt△ABC,∠ACB=90°,CD、CE是斜边上的高和中线,AC=CE=10cm,则BD长为( )21·世纪*教育网A.5cm B.10cm C.15cm D.25cm二.填空题9.(2014春•宜宾县校级期末)如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP= 时,△AOP为等边三角形.10.(2015春•普陀区期末)如果等腰三角形的顶角为60°,底边长为5,则它的腰长= .11.(2013秋•南京HYPERLINKhttp://www.21cnjy.com校级期末)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 .12.(2012秋•盐城校HYPERLINKhttp://www.21cnjy.com级期中)边长为a的等边三角形,记为第1个等边三角形.取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形.取这个正六边形不相邻的三边中点顺次连接,又得到一个等边三角形,记为第2个等边三角形.取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图)…,按此方式依次操作.则第6个正六边形的边长是 .三.解答题13.(2014秋•厦门期末)如图,AC与BD相交于点O,若OA=OB,∠A=60°,且AB∥CD,求证:△OCD是等边三角形. 14.如图,△ABC中,AB=AC,AD⊥BD于点D,E是AD延长线上的一点,且BC=BE,请判断△BCE的形状,并证明你的结论.21cnjy.com 15.(2014秋•滨州期末)如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.2-1-c-n-j-y(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程. 16.(20HYPERLINKhttp://www.21cnjy.com10秋•苏州期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C逆时针旋转60°得△ADC,连接OD.(1)求证:△DOC是等边三角形;(2)当AO=5,BO=4,α=150°时,求CO的长;(3)探究:当α为多少度时,△AOD是等腰三角形. 人教版八年级数学上册13.3.2.2《等边三角形的判定》同步训练习题(教师版) 一.选择题1.(2014秋•北流市期末)下列条件中,不能得到等边三角形的是( )A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形选D点评:节本题考查了等边三角形的判定:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形. 2.(2014秋•瑞金市期末)一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是( )A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等边三角形考点:等边三角形的判定.21世纪教育网分析:根据等腰三角形的性质易得这个三角形的三边都相等,然后根据等边三角形的判定方法可得这个三角形必为等边三角形.解答:解:∵一个三角形任意一边上的高都是这边上的中线,即三角形任意一边上的高与中线重合,∴这个三角形的三边都相等,∴这个三角形必为等边三角形.故选D.点评:本题考查了等边HYPERLINKhttp://www.21cnjy.com三角形的判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形. 3.(2014春•禅城区校级月考)在△ABC中,AB=AC,若∠A=60°,则△ABC为( )A.钝角三角形 B.直角三角形C.等边三角形 D.等腰不等边三角形考点:等边三角形的判定.21世纪教育网分析:先根据△ABC中,AB=AC得出∠B=∠C,再根据三角形内角和定理即可得出∠B的度数,进而得出结论.www.21-cn-jy.com解答:解:∵△ABC中,AB=AC,∴∠B=∠C,∵∠A=60°,∴∠B=∠C==60°,∴△ABC是等边三角形.故选C.点评:本题考查的是等边三角形的判定,熟知三个角都相等的三角形是等边三角形是解答此题的关键. 4.(2013春•射洪县期末)已知△ABC中,三边a,b,c满足|b﹣c|+(a﹣b)2=0,则∠A等于( )A.60° B.45° C.90° D.不能确定考点:等边三角形的判定与性质;非负数的性质:绝对值;非负数的性质:偶次方.21世纪教育网分析:根据非负数的性质列式求解得到a=b=c,然后选择答案即可.解答:解:△ABC中,三边a,b,c满足|b﹣c|+(a﹣b)2=0,∴b﹣c=0,a﹣b=0,∴a=b=c,∴三角形是等边三角形,所以∠A=60°.故答案选:A.点评:本题考查了三角形的形状判定,非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键. 5.(2014•祁阳县校级模拟)等边三角形的边长为4cm,它的高为( )A. B. C. D.考点:等边三角形的性质.21世纪教育网分析:根据等边三角形的性质:三线合一,即可求得BD的长,又由勾股定理即可求的高.解答:解:如图:过点A作AD⊥BC于D,∵等边三角形△ABC的边长为4cm,∴DC=DB=2cm,∵AB=4cm,∴AD==2cm.故选A.点评:本题主要考查等边三角形的性质与勾股定理.此题比较简单,注意熟练掌握等边三角形的性质是解此题的关键.【出处:21教育名师】 6.(2013秋•渭城区校级期末)在△ABC中,∠A=∠B=∠C,过点B作BD⊥AC于D,已知△ABC的周长为m,则AD=( )A. B. C. D.考点:等边三角形的性质.21世纪教育网分析:根据等边三角形的性质可得AB=AC=BC,再根据等腰三角形三线合一可得AD=AC,进而得到AD=.解答:解:∵三角形ABC是等边三角形,∴AB=AC=BC,∵BD⊥AC于D,∴AD=AC,∵△ABC周长为m,∴AD=,故选B.点评:本题考查了等边三角形的性质,以及等腰三角形的性质,关键是掌握等腰三角形三线合一.7.(201HYPERLINKhttp://www.21cnjy.com3秋•中江县期末)如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是( )A.8+2a B.8+a C.6+a D.6+2a考点:等边三角形的判定与性质;三角形的外角性质;等腰三角形的性质;含30度角的直角三角形.21世纪教育网www-2-1-cnjy-com专题:计算题.分析:△MNP中,∠P=60°,MN=NP,MQ⊥PN,根据等腰三角形的性质求解.解答:解:∵△MNP中,∠P=60°,MN=NP∴△MNP是等边三角形.又∵MQ⊥PN,垂足为Q,∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,∵NG=NQ,∴∠G=∠QMN,∴QG=MQ=a,∵△MNP的周长为12,∴MN=4,NG=2,∴△MGQ周长是6+2a.故选D.点评:本题考查了等边三角形的判定与性质,难度一般,认识到△MNP是等边三角形是解决本题的关键. 8.(2013秋•奉贤HYPERLINKhttp://www.21cnjy.com区校级期末)如图,在Rt△ABC,∠ACB=90°,CD、CE是斜边上的高和中线,AC=CE=10cm,则BD长为( )A.5cm B.10cm C.15cm D.25cm考点:等边三角形的判定与性质;含30度角的直角三角形;直角三角形斜边上的中线.21世纪教育网分析:根据条件可求得AC=AE=CE=BE,可证得△ACE为等边三角形,可求得DE=AE,可求得DE,则可求得BD.21教育网解答:解:∵∠ACB=90°,CE为斜边上的中线,∴AE=BE=CE=AC=10cm,∴△ACE为等边三角形,∵CD⊥AE,∴DE=AE=5cm,∴BD=DE+BE=5cm+10cm=15cm,故选C.点评:本题主要考查直角三角形的性质及等边三角形的性质,根据直角三角形的性质求得BE、根据等边三角形的性质求得DE是解题的关键.【版权所有:21教育】 二.填空题9.(2014春•宜宾县校级期末)如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP= a 时,△AOP为等边三角形.(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形. 10.(2015春•普陀区期末)如果等腰三角形的顶角为60°,底边长为5,则它的腰长= 5 .考点:等边三角形的判定与性质.21世纪教育网分析:在等腰三角形HYPERLINKhttp://www.21cnjy.com中,2个底角是相等的,这里用180°减去60°就是两个底角的和,再除以2就是等腰三角形的底角的度数,进而判断出三角形为等边三角形,即可求得腰长解答:解∵等腰三角形的顶角为60°,∴底角==60°,∴三角形为等边三角形,∴腰长=底边长=5,所以它的腰长为5,故答案为5.点评:本题考查了三角形的内角和是180°和等腰三角形2个底角是相等的,运用内角和求角. 11.(2013秋•南HYPERLINKhttp://www.21cnjy.com京校级期末)如图,在△ABC中,AB=1.8,BC=3.9,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 2.1 .考点:等边三角形的判定与性质;旋转的性质.21世纪教育网分析:由将△HYPERLINKhttp://www.21cnjy.comABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐