{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}2023—2024学年度上学期高三第一次大练习数学--参考答案一、选择题:本大题共8小题,每小题5分,共40分.题号12345678答案CABCADDB二、选择题:本大题共4小题,每小题5分,共20分.题号9101112答案ABDBDADABC三、填空题:本大题共4小题,每小题5分,共20分.113.2414.0.2415.221π16.e四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)【解析】bacsinBsinCac(1)因为,即sinAsinCsinBsinCsinAsinCbbcac由正弦定理可得,,化简可得a2b2c2bc,acb1且由余弦定理可得,a2b2c22bccosA,所以cosA,2π且A0,π,所以A.3abc(2)由正弦定理,sinAsinBsinCa2bc28得:sin2AsinBsinC1,4所以a28sin2A6,所以a6.18.(12分)【解析】(1)由2n1an12n1an及a11,得an0,a2n1所以n1,an2n1{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}anan1a4a3a2当n2时,有ana1an1an2a3a2a12n12n375312n1.2n32n5531当n1时,a11211,符合上式,所以an2n1.2n1112n1()由()得,所以,21bnanbn2n1222n121352n1所以S,n2232522n111352n1所以S,22n23252722n1两式相减,得211312222n112322n22n1Sn352n12n112n142222221222116n556n5,23322n16322n1106n5所以S,n9922n16n5因为0,322n110所以S.n919.(12分)【解析】(1)不妨设AB2,则ADCD1,可得ACBC2,即AC2BC2AB2,可得ACBC,又因为PC平面ABCD,BC平面ABCD,则PCBC,且ACPCC,AC,PC平面PAC,可得BC平面PAC,且BC平面PBC,所以平面PAC平面PBC.(2)取AB的中点G,可知CGCD,如图,以C为坐标原点建立空间直角坐标系,则D0,1,0,A1,1,0,B1,1,0,设P0,0,a,a0,可得DA1,0,0,DP0,1,a,{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}nDAx0设平面PAD的法向量nx,y,z,则,nDPyaz0令ya,则x0,z1,可得n0,a,1,由题意可知:平面ABCD的法向量m0,0,1,π设平面PAD与平面ABCD所成锐二面角为0,,则tan2,2sin225由tan,sincos1,解得cos(舍负),cos5mn15则cosm,n,解得a2,mn1a2151111则P0,0,2,E,,1,可得DP0,1,2,CA1,1,0,CE,,1,2222nCAxy0111设平面的法向量,则,ACEn1x1,y1,z111n1CEx1y1z1022令y11,则x11,z11,可得n11,1,1,DPn1115则cosDP,n1,DPn1531515所以直线PD与平面ACE所成角的正弦值.1520.(12分)【解析】(1)由频率分布直方图可知,平均分650.01750.04850.035950.0151080.5;2(2)由(1)可知,XN80.5,8.65,设学校期望的平均分约为m,则PXm0.84,因为P(X)0.6827,P(X)0.34135,所以P(X)0.84135,即P(X71.85)0.84,所以学校的平均分约为72分;(3)由频率分布直方图可知,分数在80,90和90,100的频率分别为0.35和0.15,{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}0.35那么按照分层抽样,抽取10人,其中分数在80,90,应抽取107人,0.350.150.15分数在90,100应抽取103人,0.350.15记事件Ai:抽测i份试卷i1,2,3,事件B:取出的试卷都不低于90分,Ci则13,PAi,PBAii6C10i11C1C2C31333PBPAiPBAi123,36C10C10C10161C23PAB6C28则PAB210.2PB1451621.(12分)【解析】(1)f(x)cosx2x,f(0)1,f(0)0.故曲线yf(x)在点(0,f(0))处的切线方程为yx.(2)由(1)得f(x)cosx2x.令函数u(x)f(x),则u(x)sinx20,所以u(x)f(x)是增函数.11f(0)1,fcos10,221所以存在,使得,即212x0,0fx0cosx02x00x0cosx0.24所以当x,x0时,f(x)0,当xx0,时,f(x)0,所以f(x)在,x0上单调递减,在x0,上单调递增.111f(x)fxsinxx2sinxcos2xsin2xsinx.000040400411π1因为x0,0,所以0sinx0sinsin,22622所以12111115sinx0sinx0.444224165故f(x).16{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}22.(12分)【解析】(1)解法一:设Ax1,y1,Bx2,y2,y10,y20,由y22x,可得y2x,11所以y,直线PA的斜率kPA,yy11直线PA:yy1xx1,又P1,2在PA上,y1112y11x1y11x1,y12y22x11所以1,又y10,y11x12所以,y126同理可得,y226y1y226,x1x22y1y246,2222;ABx1x2y1y2(46)(26)230解法二:设Ax1,y1,Bx2,y2,y10,y20,由y22x,可得y2x,11所以y,直线PA的斜率kPA,yy11直线PA:yy1xx1,又P1,2在PA上,y112故2y11x1,即2y1y11x1,y12因为y12x1,所以x12y11,同理可得x22y21,故直线AB的方程为x2y1,{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}y22x联立消去x,得y24y20,x2y1故y1y24,y1y22,故222;ABx1x2y1y25y1y24y1y2524230(2)设Cx3,y3,由条件知y1y2y30,1ABBCsinABCS△ABC2ABBCAMCN11S1BMBNBMBN△BMNBMBNsinABC2yyyyyy1313131112y2y2y2y2yyyyyy2yy13112112222222y2y2y222yyy191121,y2y2y2244AM3BM,AMy3∴1,BMy243yy1110,当时,y1y3,AC重合,不合题意,4y2y223y11y1或10,4y222y2S△ABC9的取值范围为2,.S△BMN4{#{QQABbQKEogCgQAIAAQgCEwHICAMQkAGAAAoOgBAIMAAAiBFABAA=}#}
数学-河南省三门峡市2023-2024学年高三上学期第一次大练习
2024-01-28
·
10页
·
4.4 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为Word
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片