冲刺2024年高考数学真题重组卷(新七省专用)真题重组卷01(参考答案)(考试时间:120分钟试卷满分:150分)第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。12345678CABCABDB二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。91011BDACAC第II卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。12.213.2814.6四、解答题:本题共5小题,共77分,解答应写出必要的文字说明、证明过程及验算步骤。15.(13分)【解】(1)函数的定义域为.将代入,解得,即,由切线方程,则切线斜率.故,解得.(2)证明:由(1)知,从而等价于.设函数,则.所以当时,,当时,.故在上单调递减,在上单调递增,从而在上的最小值为.设函数,从而在上的最大值为.故,即.16.(15分)【解析】(1)由频率分布直方图得该地区这种疾病患者的平均年龄为:岁.(2)该地区一位这种疾病患者的年龄位于区间,的频率为:,估计该地区一位这种疾病患者的年龄位于区间,的概率为0.89.(3)设从该地区中任选一人,此人的年龄位于区间,为事件,此人患这种疾病为事件,则.17.(15分)【解析】证明:(1)连接,,,为中点.,又,,与均为等边三角形,,,,平面,平面,.(2)设,,,,,,又,,平面,以为原点,建立如图所示空间直角坐标系,,,,,0,,,,,,,设平面与平面的一个法向量分别为,,则,令,解得,,令,解得,,故,1,,,1,,设二面角的平面角为,则,故,所以二面角的正弦值为.18.(17分)【解析】(1)将点代入双曲线方程得,化简得,,故双曲线方程为,由题显然直线的斜率存在,设,设,,,则联立双曲线得:,故,,,化简得:,故,即,而直线不过点,故;(2)设直线的倾斜角为,由,,得由,,得,即,联立,及得,同理,故,而,由,得,故.19.(17分)【解】(1)由已知得.于是当时,.又,故,即.所以数列的通项公式为.(2)因为,,所以.因此,.(3)下面分三种情况证明.①若是的子集,则.②若是的子集,则.③若不是的子集,且不是的子集.令,则,,.于是,,进而由,得.设是中的最大数,为中的最大数,则.由(2)知,,于是,所以,即.又,故,从而,故,所以,即.综合①②③得,.
真题重组卷01(新七省专用)(参考答案)
2024-03-14
·
5页
·
367.9 K
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片