潜江天门仙桃江汉油田2023年初中学业水平考试(中考)数学试卷(本卷共6页,满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名,准考证号填写在试卷第1页装订线内和答题卡上,并在答题卡的规定位置贴好条形码,核准姓名和准考证号.2.选择题的答案选出后,必须使用2B铅笔把答题卡上对应的答案标号涂黑.如需改动,先用橡皮擦干净后,再选涂其他答案标号.非选择题答案必须使用0,5mm黑色墨水签字笔填写在答题卡对应的区域内,写在本试卷上无效.3.考试结束后,请将本试卷和答题卡一并交回.一、选择题(本大题共10个小题,每小题3分,满分30分.在下列每个小题给出的四个答案中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分)1.的绝对值是()A. B. C. D.【答案】D【解析】【分析】根据绝对值的性质即可求出答案.【详解】解:.故选:D.【点睛】本题考查了绝对值,解题的关键在于熟练掌握绝对值的性质,负数的绝对值等于这个负数的相反数.2.2023年全国高考报名人数约12910000人,数12910000用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数,据此判断即可.【详解】解:数12910000用科学记数法表示为.故选:B.【点睛】本题考查了科学记数法,科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.3.如图是一个立体图形的三视图,该立体图形是()A三棱柱 B.圆柱 C.三棱锥 D.圆锥【答案】D【解析】【分析】根据主视图和左视图确定是柱体、锥体、球体,再由俯视图确定具体形状.【详解】解:由主视图和左视图为三角形判断出是锥体,根据俯视图是圆可判断出这个几何体应该是圆锥.故选:D.【点睛】本题考查了由物体的三种视图确定几何体的形状,考查了学生的思考能力和对几何体三种视图的空间想象能力和综合能力.4.不等式组的解集是()A. B. C. D.【答案】A【解析】【分析】先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集.【详解】解:解不等式①得:,解不等式②得:,∴不等式组的解集为,故选A.【点睛】本题主要考查了解一元一次不等式组,正确求出每个不等式的解集是解题的关键.5.某班9名学生参加定点投篮测试,每人投篮10次,投中的次数统计如下:3,6,4,6,4,3,6,5,7.这组数据的中位数和众数分别是()A.5,4 B.5,6 C.6,5 D.6,6【答案】B【解析】【分析】根据中位数和众数的定义即可求出答案.【详解】解:这组数据3,6,4,6,4,3,6,5,7中出现次数最多的是6,众数是6.将这组数据3,6,4,6,4,3,6,5,7按从小到大顺序排列是3,3,4,4,5,6,6,6,7,中位数为:5.故选:B【点睛】本题考查了中位数和众数,解题的关键在于熟练掌握中位数和众数的概念,中位数是指将一组数据按大小顺序排列,若一组数据为奇数个,处在最中间位置的一个数叫做这组数据的中位数;若一组数据是偶数,则处在最中间的两个数的平均数为这组数据的中位数;众数指的是在一组数据中出现次数最多的数叫做这组数据的众数.6.在反比例函数的图象上有两点,当时,有,则的取值范围是()A. B. C. D.【答案】C【解析】【分析】根据题意可得反比例函数图象在一三象限,进而可得,解不等式即可求解.【详解】解:∵当时,有,∴反比例函数的图象在一三象限,∴解得:,故选:C.【点睛】本题考查了反比例函数图象性质,根据题意得出反比例函数的图象在一三象限是解题的关键.7.如图,在的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点外接圆的一部分,小正方形边长为1,图中阴影部分的面积为()A. B. C. D.【答案】D【解析】【分析】根据网格的特点作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心,先根据勾股定理的逆定理证明是直角三角形,从而可得,然后根据,进行计算即可解答.【详解】解:如图:作的垂直平分线,作的垂直平分线,设与相交于点O,连接,则点O是外接圆的圆心,由题意得:,,,∴,∴是直角三角形,∴,∵,∴,故选:D.【点睛】本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.8.如图,在中,,点在边上,且平分的周长,则的长是()A. B. C. D.【答案】C【解析】【分析】如图所示,过点B作于E,利用勾股定理求出,进而利用等面积法求出,则可求出,再由平分的周长,求出,进而得到,则由勾股定理得.【详解】解:如图所示,过点B作于E,∵在中,,∴,∵,∴,∴,∵平分的周长,∴,即,又∵,∴,∴,∴,故选C.【点睛】本题主要考查了勾股定理,正确作出辅助线构造直角三角形是解题的关键.9.拋物线与轴相交于点.下列结论:①;②;③;④若点在抛物线上,且,则.其中正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B【解析】【分析】二次函数整理得,推出,可判断①错误;根据二次函数的的图象与x轴的交点个数可判断②正确;由,代入可判断③正确;根据二次函数的性质及数形结合思想可判断④错误.【详解】解:①由题意得:,∴,∵,∴,∴,故①错误;②∵抛物线与x轴相交于点.∴有两个不相等的实数根,∴,故②正确;③∵,∴,故③正确;④∵抛物线与x轴相交于点.∴抛物线的对称轴为:,当点在抛物线上,且,∴或,解得:,故④错误,综上,②③正确,共2个,故选:B.【点睛】本题考查了二次函数与系数的关系,掌握二次函数的性质及数形结合思想是解题的关键.10.如图,长方体水池内有一无盖圆柱形铁桶,现用水管往铁桶中持续匀速注水,直到长方体水池有水溢出一会儿为止.设注水时间为(细实线)表示铁桶中水面高度,(粗实线)表示水池中水面高度(铁桶高度低于水池高度,铁桶底面积小于水池底面积的一半,注水前铁桶和水池内均无水),则随时间变化的函数图象大致为()A. B. C. D.【答案】C【解析】【分析】根据特殊点的实际意义即可求出答案.【详解】解:根据图象知,时,铁桶注满了水,,是一条斜线段,,是一条水平线段,当时,长方体水池开始注入水;当时,长方体水池中的水没过铁桶,水池中水面高度比之开始变得平缓;当时,长方体水池满了水,∴开始是一段陡线段,后变缓,最后是一条水平线段,观察函数图象,选项C符合题意,故选:C.【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二、填空题(本大题共5个小题,每小题3分,满分15分,请将答案直接填在答线卡对应的横线上)11.计算的结果是_________.【答案】1【解析】【分析】先计算零指数幂,负整数指数幂和化简二次根式,然后计算加减法即可.【详解】解:,故答案为:1.【点睛】本题主要考查了化简二次根式,零指数幂和负整数指数幂,正确计算是解题的关键.12.在平面直角坐标系中,若反比例函数的图象经过点和点,则的面积为_________.【答案】【解析】【分析】利用待定系数法求出反比例函数解析式,从而求出点坐标,画图,最后利用割补法即可求出的面积.【详解】解:反比例函数的图象经过点,,.反比例函数为:.反比例函数的图象经过点,,.如图所示,过点作于,过点作的延长线于,设与轴的交点为,,,,,,.故答案为:.【点睛】本题考查了反比例函数,涉及到待定系数求解析式,反比例函数与三角形面积问题,解题的关键需要画出图形以及利用割补法求出面积.13.如图,在中,的内切圆与分别相切于点,,连接的延长线交于点,则_________.【答案】##度【解析】【分析】如图所示,连接,设交于H,由内切圆的定义结合三角形内角和定理求出,再由切线长定理得到,进而推出是的垂直平分线,即,则.【详解】解:如图所示,连接,设交于H,∵是的内切圆,∴分别是的角平分线,∴,∵,∴,∴,∴,∵与分别相切于点,,∴,又∵,∴是的垂直平分线,∴,即,∴,故答案为:.【点睛】本题主要考查了三角形内切圆,切线长定理,三角形内角和定理,线段垂直平分线的判定,三角形外角的性质,正确作出辅助线是解题的关键.14.有四张背面完全相同的卡片,正面分别画了等腰三角形,平行四边形,正五边形,圆,现将卡片背面朝上并洗匀,从中随机抽取一张,记下卡片上的图形后(不放回),再从中随机抽取一张,则抽取的两张卡片上的图形都是中心对称图形的概率为_________.【答案】【解析】【分析】用树状图表示所有情况的结果,然后找出抽取的两张卡片上的图形都是中心对称图形的情况,最后根据概率公式计算即可.【详解】解:分别用,,,表示等腰三角形,平行四边形,正五边形,圆,画树状图如下:依题意和由图可知,共有12种等可能的结果数,其中两次抽出的图形都是中心对称图形的占2种,两次抽出的图形都是中心对称图形的概率为:.故答案为.【点睛】本题考查了树状图法,中心对称图形,解题的关键在于熟练掌握概率公式以及正确理解题意(拿出卡片不放回).15.如图,和都是等腰直角三角形,,点在内,,连接交于点交于点,连接.给出下面四个结论:①;②;③;④.其中所有正确结论的序号是_________.【答案】①③④【解析】【分析】由题意易得,,,,则可证,然后根据全等三角形的性质及平行四边形的性质与判定可进行求解.【详解】解:∵和都是等腰直角三角形,∴,,,,∵,,∴,故①正确;∴,∴,,故③正确;∵,,,∴,;故②错误;∴,∵,∴四边形是平行四边形,∴,故④正确;故答案为①③④.【点睛】本题主要考查全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定,熟练掌握全等三角形的性质与判定、等腰直角三角形的性质及平行四边形的性质与判定是解题的关键.三、解答题(本大题共9个题,满分75分)16.(1)计算:;(2)解分式方程:.【答案】(1);(2)【解析】【分析】(1)根据多项式除以单项式及单项式乘以多项式可进行求解;(2)根据分式方程的解法可进行求解.【详解】(1)解:原式;(2)解:两边乘以,得.解得:.检验,将代入.∴是原分式方程的解.【点睛】本题主要考查多项式除以单项式、单项式乘以多项式及分式方程的解法,熟练掌握各个运算是解题的关键.17.为了解学生“防诈骗意识”情况,某校随机抽取了部分学生进行问卷调查,根据调查结果将“防诈骗意识”按A(很强),B(强),C(一般),D(弱),E(很弱)分为五个等级.将收集的数据整理后,绘制成如下不完整的统计图表.等级人数A(很强)aB(强)bC(一般)20D(弱)19E(很弱)16(1)本次调查的学生共_________人;(2)已知,请将条形统计图补充完整;(3)若将A,B,C三个等级定为“防诈骗意识”合格,请估计该校2000名学生中防诈骗意识”合格的学生有多少人?【答案】(1)共100人(2)见解析(3)估计该校2000名学生中“防诈骗意识”合格的学生有1300人【解析】【分析】(1)根据统计图可进行求解;(2)由(1)及可求出a、b的值,然后问题可求解;(3)根据统计图及题意可直接进行求解.【小问1详解】解:由统计图可知:(人);故答案为100;【小问2详解】解:由(1)得:,∵,∴,补全条形统计图如下:【小问3详解】解:由题意得:(人).∴估计该校2000名学生中“防诈骗意识”合格的学生有1300人.【点睛】本题主要考查条形统计图及扇形统计图,解题的关键是理清统计图中的各个数据.18.为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形,斜面坡度是指坡面的铅直高度与水平宽度的比.已知斜坡长度为20米,,求斜坡的长.(结果精确到米)(参考数据:)【答案】斜坡的长约为10米【解析】【分析】过点作于点,在中,利用正
2023年湖北省潜江、天门、仙桃、江汉油田中考数学真题(解析版)
2023-12-06
·
31页
·
2 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片