高考数学专题06 染色问题(解析版)

2023-11-18 · 26页 · 1.1 M

专题06染色问题涂色问题常用方法:(1)根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法;(2)根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数;(3)根据某两个不相邻区域是否同色分类讨论.从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数.例1.在中国地图上,西部五省(甘肃、四川、青海、新疆、西藏)如图所示,有四种颜色供选择,要求每省涂一色,相邻省不同色,则不同的涂色方法有(       )种.A.48 B.72 C.96 D.120【答案】B【解析】【分析】结合分步、分类计数原理求得正确答案.【详解】先进行编号:新疆、甘肃、青海、西藏、四川,按的顺序进行涂色,其中颜色可以相同或不相同,所以不同的涂色方法数有种.故选:B例2.“赵爽弦图”是我国古代数学的瑰宝,如图所示,它是由四个全等的直角三角形和一个正方形构成.现用4种不同的颜色(4种颜色全部使用)给这5个区域涂色,要求相邻的区域不能涂同一种颜色,每个区域只涂一种颜色,则不同的涂色方案有(       )A.24种 B.48种 C.72种 D.96种【答案】B【解析】【分析】根据题意,分2步进行分析区域①、②、⑤和区域③、④的涂色方法,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:当区域①、②、⑤这三个区域两两相邻,有种涂色的方法;当区域③、④,必须有1个区域选第4种颜色,有2种选法,选好后,剩下的区域有1种选法,则区域③、④有2种涂色方法,故共有种涂色的方法.故选:B例3.如图,用4种不同的颜色对A,B,C,D四个区域涂色,要求相邻的两个区域不能用同一种颜色,则不同的涂色方法有(       )A.24种 B.48种 C.72种 D.96种【答案】B【解析】【分析】按涂色顺序进行分四步,根据分步乘法计数原理可得解.【详解】按涂色顺序进行分四步:涂A部分时,有4种涂法;涂B部分时,有3种涂法;涂C部分时,有2种涂法;涂D部分时,有2种涂法.由分步乘法计数原理,得不同的涂色方法共有种.故选:B.例4.用五种不同颜色给三棱柱的六个顶点涂色,要求每个顶点涂一种颜色,且每条棱的两个顶点涂不同颜色,则不同的涂法有(       )A.种 B.种 C.种 D.种【答案】D【解析】【分析】对所选颜色的种数进行分类讨论,先涂、、三点,再确定、、三点颜色的选择方法种数,结合分步乘法和分类加法计数原理可得结果.【详解】分以下几种情况讨论:①若种颜色全用上,先涂、、三点,有种,然后在、、三点中选择两点涂另外两种颜色,有种,最后一个点有种选择,此时共有种;②若用种颜色染色,由种选择方法,先涂、、三点,有种,然后在、、三点中需选择一点涂最后一种颜色,有种,不妨设涂最后一种颜色的为点,若点与点同色,则点只有一种颜色可选,若点与点同色,则点有两种颜色可选,此时共有种;③若用种颜色染色,则有种选择方法,先涂、、三点,有种,点有种颜色可选,则、的颜色只有一种选择,此时共有.由分类加法计数原理可知,共有种涂色方法.故选:D.例5.如图所示,积木拼盘由,,,,五块积木组成,若每块积木都要涂一种颜色,且为了体现拼盘的特色,相邻的区域需涂不同的颜色(如:与为相邻区域,与为不相邻区域),现有五种不同的颜色可供挑选,则不同的涂色方法的种数是(       )A.780 B.840 C.900 D.960【答案】D【解析】【分析】先涂,再涂,再涂,再涂,最后涂,由分步乘法计数原理,可得不同的涂色方法种数.【详解】解:先涂,则有种涂法,再涂,因为与相邻,所以的颜色只要与不同即可,有种涂法,同理有种涂法,有种涂法,有种涂法,由分步乘法计数原理,可知不同的涂色方法种数为.故选:D.例6.如图所示的几何体由三棱锥与三棱柱组合而成,现用种不同颜色对这个几何体的表面涂色(底面不涂色),要求相邻的面均不同色,则不同的涂色方案共有(       )A.种 B.种C.种 D.种\【答案】C【解析】【分析】第一步:根据相邻的面均不同色,涂三棱锥P-ABC的三个侧面,第二步:涂三棱柱ABC-的三个侧面,然后利用分步计数原理求解.【详解】第一步:涂三棱锥P-ABC的三个侧面,因为要求相邻的面均不同色,所以共有种不同的涂法,第二步:涂三棱柱ABC-的三个侧面,先涂侧面有种涂法,再涂和只有1种涂法,所以涂三棱柱的三个侧面共有种涂法,所以对几何体的表面不同的涂色方案共有种涂法,故选:C例7.用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有(       )种不同的涂色方案.A.180 B.360 C.64 D.25【答案】A【解析】【分析】采用分步乘法计数原理进行分析即可.【详解】第一步涂A,有种涂法,第二步涂B,和A不同色,有种涂法,第三步涂C,和AB不同色,有种涂法,第四步涂D,和BC不同色,有种涂法,由分步乘法技术原理可知,一共有种涂色方案,故选:A.例8.数学上的“四色问题”,是指“任何一张地图只用四种颜色就能使具有公共边界的国家着上不同的颜色”,现有五种颜色供选择,涂色我国西部五省,要求每省涂一色,相邻各省不同色,有(       )涂色方法.A.120种 B.180种 C.380种 D.420种【答案】D【解析】【分析】根据题意,分4步依次分析5个省的涂色方法的数目,进而结合分步计数原理,计算可得答案.【详解】解:根据题意,依次分析5个省的涂色方法的数目:对于新疆有5种涂色的方法,对于青海有4种涂色方法,对于西藏有3种涂色方法,对于四川与甘肃:若西藏与甘肃颜色相同,则有3种涂色方法,若西藏与甘肃颜色不相同,则甘肃有2种涂色方法,四川有2种涂色方法,则西藏与甘肃的涂色方法有3+2×2=7种,则共有5×4×3×7=420种涂色方法;故选:D.例9.用红、黄、蓝3种颜色给如图所示的五连圆涂色,要求相邻两个圆所涂颜色不能相同,且红色至少要涂两个圆,则不同的涂色方案种数为(       )A.26 B.28 C.30 D.32【答案】C【解析】【分析】根据题意,分析可得红色可以涂2个圆或3个圆,分2种情况讨论,由加法原理计算可得答案【详解】解:根据题意,红色至少要涂2个圆,则红色可以涂2个圆或3个圆,公2种情况讨论:(1)红色涂3个圆,则红色只能涂第1,3,5个圆,此时有种涂法,(2)红色涂2个圆,若红色涂第1,3个圆,有种涂法,若红色涂第1,4个圆,有种涂法,若红色涂第1,5个圆,则有种涂法,若红色涂第2,4个圆,有种涂法,若红色涂第2,5个圆,有种涂法,若红色涂第3,5个圆,有种涂法,此时有种,所以共有种,故选:C例10.在一个正六边形的六个区域涂色(如图),要求同一区域同一种颜色,相邻的两块区域(有公共边)涂不同的颜色,现有种不同的颜色可供选择,则不同涂色方案有( )A.种 B.种 C.种 D.种【答案】C【解析】【分析】对、、三个区域所涂颜色的种数进行分类讨论,确定另外三个区域所涂颜色的方法种数,利用分步乘法和分类加法计数原理可得结果.【详解】解:考虑、、三个区域用同一种颜色,共有方法数为种;考虑、、三个区域用种颜色,共有方法数为种;考虑、、三个区域用种颜色,共有方法数为种.所以共有方法数为种.故选:C.例11.如图是在“赵爽弦图”的基础上创作出的一个“数学风车”平面模型,图中正方形内部为“赵爽弦图”(由四个全等的直角三角形和一个小正方形组成),,,,这4个角形和“赵爽弦图”涂色,且相邻区域(即图中有公共点的区域)不同色,已知有4种不同的颜色可供选择.则不同的涂色方法种数是(       )A.48 B.54C.72 D.108【答案】C【解析】【分析】分别设这五个区分别①、②、③、④、⑤区,由分步计数原理分步为每一个区进行涂色,当给④区涂色时,分为④区与②区同色时和与②区不同色时,讨论即可得出答案.【详解】设“赵爽弦图”为①区,,,,这4个三角形分别为②、③、④、⑤区.第一步给①区涂色,有4种涂色方法.第二步给②区涂色,有3种涂色方法.第三步给③区涂色,有2种涂色方法.第四步给④区涂色,若④区与②区同色时,⑤区有2种涂色方法.若④区与②区不同色时,则④区有1种涂色方法,⑤区有1种涂色方法.由分类、分步计数原理可得共有故选:C例12.如图,用四种不同的颜色给图中的A,B,C,D,E,F,G七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有(       )A.192种 B.336种 C.600种 D.624种【答案】C【解析】由题意,点E,F,G分别有4,3,2种涂法,再分当A与F相同、A与G相同和A既不同于F又不同于G,三种情况讨论,进而求解.【详解】由题意,点E,F,G分别有4,3,2种涂法,(1)当A与F相同时,A有1种涂色方法,此时B有2种涂色方法,①若C与F相同,则C有1种涂色方法,此时D有3种涂色方法;②若C与F不同,则D有2种涂色方法.故此时共有种涂色方法.(2)当A与G相同时,A有1种涂色方法,①若C与F相同,则C有1种涂色方法,此时B有2种涂色方法,D有2种涂色方法;②若C与F不同,则C有2种涂色方法,此时B有2种涂色方法,D有1种涂色方法.故此时共有种涂色方法.(3)当A既不同于F又不同于G时,A有1种涂色方法.①若B与F相同,则C与A相同时,D有2种涂色方法,C与A不同时,C和D均只有1种涂色方法;②若B与F不同,则B有1种涂色方法,(i)若C与F相同,则C有1种涂色方法,此时D有2种涂色方法;(ii)若C与F不同,则必与A相同,C有1种涂色方法,此时D有2种涂色方法.故此时共有种涂色方法.综上,共有种涂色方法.故选:C.【点睛】利用两个计数原理解题的策略:1、利用分类计数原理解题分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分步属于不同种类的两种方法是不同的方法,不能重复,分类时除了不能交叉重复外,还不能有遗漏;2、利用分步计数原理解题时要注意按事件发生的过程合理分步,即分步时有先有后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事,分步必须满足两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.例13.如图,有一种游戏画板,要求参与者用六种颜色给画板涂色,这六种颜色分别为红色、黄色1、黄色2、黄色3、金色1、金色2,其中黄色1、黄色2、黄色3是三种不同的颜色,金色1、金色2是两种不同的颜色,要求红色不在两端,黄色1、黄色2、黄色3有且仅有两种相邻,则不同的涂色方案有( )A.120种 B.240种 C.144种 D.288种【答案】D【解析】【分析】首先计算出“黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,然后计算出“红色在左右两端,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案”数,用前者减去后者,求得题目所求不同的涂色方案总数.【详解】不考虑红色的位置,黄色1、黄色2、黄色3有且仅有两个相邻的涂色方案有种.这种情况下,红色在左右两端的涂色方案有种;从而所求的结果为种.故选D.【点睛】本小题主要考查涂色问题,考查相邻问题、不在两端的排列组合问题的求解策略,考查对立事件的方法,属于中档题.例14.用五种不同的颜色给图中六个小长方形区域涂色,要求颜色齐全且有公共边的区域颜色不同,则共有涂色方法A.种 B.种 C.种 D.种【答案】D【解析】【详解】其中可能共色的区域有AC,AD,AE,AF,BE,BF,CD,CF,DF共9种,故共有涂色方法为,选D.点睛:求解排列、组合问题常用的解题方法:(1)元素相邻的排列问题——“捆邦法”;(2)元素相间的排列问题——“插空法”;(3)元素有顺序限制的排列问题——“除序法”;(4)带有“含”与“不含”“至多”“至少”的排列组合问题——间接法.二、双空题例15.(1)从5种颜色种选出3种颜色,涂在一个四棱锥的五个顶点上,每一个顶点涂一种颜色,并使同一条棱上的

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐