山西省运城市2023-2024学年高三上学期期末调研测试数学答案

2024-01-27 · 7页 · 215 K

高三期末数学答案一、DBCADCCB二、9.AC10.ACD11.ABD12.CD三、4237-80,3ln3四、解答题:17.(12分)(1)由正弦定理知,2sinBcosC2sinAsinC,...........................................................1分sinAsinBCsinBcosCcosBsinC,...........................................................2分代入上式得2cosBsinCsinC0,1,C(0,),sinC0,cosB,...........................................................3分2B(0,)B...........................................................4分3()若选①:由平分得,分2BDABC:SABCSABDSBCD..............................................5111acsin3asin3csin.,..........................................................6分232626即ac3(ac)...........................................................7分在ABC中,由余弦定理得b2a2c22accos,3a2c2ac12,..........................................................8分ac3(ac)联立,得2,22(ac)9ac36acac12解得ac12,.........................................................9分113SacsinB1233..........................................................10分ABC222121122若选②:得BDBABC,BD(BABC)2BA2BABCBC,244得a2c2ac36,.........................................................7分在ABC中,由余弦定理得b2a2c22accos,3a2c2ac12,..................................................8分a2c2ac36联立得,分22ac12.................................................9acac12113SacsinB1233..................................................10分ABC222解:()由题意,设等比数列的公比为,18.1{an}qa2则a2,aaq2q,.........................................................................................1分1qq32成等差数列,a1,a2,a31,分2a2a1a31.........................................................................................................................22即2q14.....................................................................................3分q化简整理得:2q25q20,1解得q或q2,2单调递增,,分a20,数列{an}q2..................................................................................42首项a1,12n1n1*.....................................................................................5分an122,nNa1(n为奇数)n1n21(n为奇数)(2)由(1)知,可得b=,.......................7分n1为偶数)n2an(n2(n为偶数)2则数列的前项和为:{bn}20b1b2b3b19b201=aaaa10(aaaa)..................................9分13519224620=(20222421810)(202224218)=(202224218)2-101410=2101422132=...........................................................................................................................10分319.(1)存在,当B1C为圆柱OO1的母线时,BCAB1................................1分证明如下:连接BC,AC,B1C,因为B1C为圆柱OO1的母线,所以B1C平面ABC,又因为BC平面ABC,所以B1CBC.........................2分因为AB为圆O的直径,所以BCAC............................................................3分又ACB1CC,AC,B1C平面AB1C,所以BC平面AB1C,......................................4分因为AB1平面AB1C,所以BCAB1.......................................5分(2)以O为原点,OA,OO1分别为y,z轴,垂直于y,z轴的直线为x轴建立空间直角坐标系.如图所示,......................................6分则A1(0,1,2),O1(0,0,2),B(0,1,0),ππ13因为劣弧的长为,所以,,A1B1A1O1B1B1,,2662213则,OB,,0.分O1B(0,1,2)11................................................................................722设平面O1BB1的法向量m(x,y,z),OBmy2z01则,13OBmxy011223令x3,解得y3,z,所以23m3,3,.............................................9分2因为x轴垂直平面A1O1B,所以平面A1O1B的一个法向量n(1,0,0).................................10分3251cosm,n所以317,...............................11分934又二面角A1O1BB1的平面角为锐角,251故二面角A1O1BB1的余弦值为................................12分17120.解:(1)依题意,甲投中的概率为p,乙投中的概率为,03133于是得PX31PX51p,解得p,..........................2分30404X的所有可能值为0,2,3,5,311311PX011,PX21,436432131311PX31,PX5,..........................4分3412434所以X的分布列为:X0235P111162124.............................................................................................5分()设甲、乙都选择方案投篮,投中次数为,都选择方案投篮,投中次数为,3AY1BY21则Y1B2,p0,Y2B2,,..........................6分3则两人都选择方案A投篮得分和的均值为E2Y1,都选择方案B投篮得分和的均值为E3Y2,..........................................7分1则E2Y2EY22p4p,E3Y3EY322,..............8分1100223若,即,解得1分E2Y1E3Y24p02p01..............92;1若E2YE3Y,即4p2,解得p;..............10分120021若E2YE3Y,即4p2,解得0p............................11分120021所以当p1时,甲、乙两位同学都选择方案A投篮,得分之和的均值较大;201当p时,甲、乙两位同学都选择方案A或都选择方案B投篮,得分之和的均值相等;021当0p时,甲、乙两位同学都选择方案B投篮,得分之和的均值较大............12分0221、解:(1)由题意得2c23,解得c3,...........................1分a又AOa,OBb,故tanABO2,即a2b,...........................2分11b又a2b2c2,解得b21,a24,..............................................3分x2故椭圆方程为y21;..............................................4分4x2(2)直线l的方程为ykx2,k0,与y21联立4得:14k2x216k2x16k240,........................................5分16k248k22设QxQ,yQ,则2x,解得x,........................................6分Q14k2Q14k228k221因为点Q在第一象限,所以x0,解得k,........................................7分Q14k24124k24k直线AB方程为yx1,与ykx2联立得x,故x,...........8分122k1P2k1ykx2中,令x0得y2

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为Word

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐