2024-2025学年河南省开封市高二上学期1月期末调研考试数学试题❖一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知点B是点在坐标平面Oxy内的射影,则()A. B. C. D.5【答案】A【解析】【分析】首先得到点的坐标,结合向量模的计算公式即可得解.【详解】点B是点在坐标平面Oxy内的射影,,,故选:A.2.设,则“”是“直线与直线平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】【分析】根据两直线平行的公式计算可得或 ,进而可判断充分与必要条件.【详解】直线与直线平行则,即,可得或 ,故“ ”是“直线与直线平行”的充分不必要条件,故选:A3.古希腊数学家阿波罗尼奥斯采用平面切割圆锥的方法来研究圆锥曲线,用垂直于圆锥轴的平面去截圆锥,得到的截面是圆,把平面再渐渐倾斜得到的截面是椭圆.若用矩形ABCD截某圆锥得到的椭圆E与该矩形的四边相切,且该矩形的长:宽为,则椭圆E的离心率为()A. B. C. D.【答案】C【解析】【分析】由题意,再根据求解即可.【详解】由题意,得,故离心率为故选:C4.中,,,C点在y轴上,若AB边上的中线CD也是AB边上的高,则直线CD的方程为()A. B.C. D.【答案】B【解析】【分析】利用中点坐标公式得,根据两直线垂直斜率之积等于可得,然后利用点斜式即可得【详解】由题意,得D是AB的中点,则,且,又,则,则直线CD的方程为,即故选:B5.已知直线与圆相交,且直线被圆所截得的弦长为4,则直线的方程可能是()A. B.C. D.【答案】B【解析】【分析】利用垂径定理和点到直线的距离公式逐项判断即可.【详解】圆的圆心为,半径为,因为弦长为4,所以圆心到直线的距离,对于A,,不符合题意;对于B,,符合题意;对于C,,不符合题意;对于D,,不符合题意;故选:B6.已知数列的首项,且满足,则下列是这个数列中的项的是()A.191 B.193 C.1023 D.1025【答案】D【解析】【分析】根据条件构造等比数列,逐个求解即可判断各项.【详解】,,是以为首项,2为公比的等比数列,,即,对于A、令,解得2,故A错误;对于B、令,解得2,故B错误;对于C、令,解得2,故C错误;对于D、令,解得2,是第10项,故D正确故选:7.如图,在平行六面体中,,,则下列直线与平面垂直的是()A.AC B. C. D.【答案】C【解析】【分析】设 , , ,根据空间向量的数量积运算可得 ,进而可得 平面 .【详解】设 , , ,则 为空间所有向量的一个基底,且 , , ,因为 , ,所以 , , , , ,又 ,平面, 平面 故选:C8.已知等差数列的前n项,前2n项,前3n项的和分别为A,B,C,则()A. B.C. D.【答案】D【解析】【分析】根据等差数列分段和的性质可得,,仍然成等差数列,进而化简求解即可.【详解】等差数列的前n项、前2n项、前3n项的和分别为A、B、C,,,仍然成等差数列,,化为,即故选:D二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得2分,有选错的得0分.9.已知经过,两点的直线l的一个方向向量为,则直线l的倾斜角可能为()A. B. C. D.【答案】BC【解析】【分析】应用两点式求斜率,结合方向向量与斜率关系列方程求斜率,进而确定倾斜角的大小.【详解】由题意,,解得,则,设倾斜角为,则,解得或.故选:BC10.平面内与两定点,连线的斜率之积等于非零常数m的点的轨迹,加上,两点所形成的曲线C可以是()A.若,C是圆心在原点的圆B.若,C是焦点在x轴上椭圆C.若,C是焦点在x轴上椭圆D.若,C是焦点在x轴上的双曲线【答案】ACD【解析】【分析】设动点为,再根据化简求解可得,再分别讨论,,与时的情况即可.【详解】设动点,当时,由条件可得,即,又、的坐标满足,对A,当时,曲线C的方程为,C是圆心在原点的圆,所以A正确;对B,当时,曲线C的方程为,C为焦点在y轴上的椭圆,故B错误;对C,当时,,C是焦点在x轴上的椭圆,故C正确;对D,当时,,C是焦点在x轴上的双曲线,故D正确.故选:ACD11.已知数列满足:,,则()A. B.C. D.【答案】ACD【解析】【分析】根据递推公式可得,化简可得,再逐个选项求解数列各项判断即可.【详解】,时,,两式相减,得,,即,对于A,,,,,,,,,,,故A正确;对于B,,,,,,故B不正确;对于C,时,,时,,故C正确;对于D,,,,,,故D正确,故选:ACD三、填空题:本题共1小题,每小题5分,共5分.12.圆C的圆心在x轴上,且经过,两点,则圆C的标准方程为_________.【答案】【解析】【分析】设出圆心坐标,利用两点间的距离公式求出圆心坐标与半径,可得圆的方程.【详解】解:设圆心坐标为,则,解得x=1,即圆心为,半径为,所以圆C的标准方程为故答案为:;13.已知等比数列的公比为,前项和为,若,则_________.【答案】5【解析】【分析】利用等比数列的求和公式即可求解.【详解】根据等比数列前项和公式可得:,所以,则,因此,所以故答案为:14.已知A,B为双曲线C的左,右顶点,点M在C上,且是顶角为的等腰三角形,写出C的一条渐近线方程_________.【答案】或【解析】【分析】由题意,求出M的坐标,代入双曲线方程,化简,可求双曲线的渐近线方程.【详解】令双曲线方程为,,,因为是顶角为的等腰三角形,则,故横坐标为,纵坐标为,故,代入双曲线方程:,双曲线的渐近线方程为故答案为:或四、解答题:本题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.15.如图,已知正四面体的棱长为1,是棱的中点,是线段的中点,记,,(1)用,,表示向量(2)求【答案】(1)(2)【解析】【分析】(1)根据空间向量线性运算求解即可;(2)根据,再平方求解可得答案.【小问1详解】因为,,,所以;【小问2详解】依题意,得,,所以,,所以.16.已知是等差数列,且,(1)求的通项公式;(2)设数列,若,求满足条件的最大整数【答案】(1)(2)【解析】【分析】(1)由题意利用等差数列的性质求出,求出公差,即可求得答案;(2)由(1)的结果可求出的表达式,利用裂项求和法求出,解不等式即得答案.【小问1详解】是等差数列,设公差为d,由得,,由得,,,所以【小问2详解】,则,由,解得,,即,所以满足条件的最大整数n为17.已知A,B两点的坐标分别是,,直线AM,BM相交于点M,且直线AM的斜率与直线BM的斜率的差是(1)求点M的轨迹方程;(2)若经过点的直线l与点M的轨迹相交于C,D两点,,O为坐标原点,求线段CD的长.【答案】(1)(2)【解析】【分析】(1)先设点,再求出斜率,列方程求值.(2)设直线l的方程为:联立,根据垂直得到所以即,整理带入得到答案.【小问1详解】设,则,,所以,化简得【小问2详解】易知直线l的斜率存在,记为k,设直线l的方程为:,,,联立得,所以①因为,所以即,即,整理可得,将①代入,得,即,所以18.如图,在直三棱柱中,,,M是AB的中点,已知平面与平面的夹角为(1)求的长;(2)若N是的中点,P是与的交点,Q是线段上一点,且平面(i)求;(ii)求直线PQ到平面的距离.【答案】(1)2;(2)(i)23;(ii)【解析】【分析】(1)构建合适空间直角坐标系,记,应用向量法求面面角的余弦值,得到方程求参数,即得结果;(2)(i)设,得,进而可得,结合线面平行及向量垂直的坐标表示求参数,即可得解;(ii)将线面距离化为求点面距,应用向量法求距离.【小问1详解】如图,分别以,,为x,y,z轴建立空间直角坐标系,记,则,,,,BC中点因为平面ABC,平面ABC,所以,又,由且都在平面内,所以平面,所以为平面的一个法向量,又,,设n=x,y,z为平面的法向量,有,则,令x=1,所以平面的一个法向量,所以,,解得a=2.【小问2详解】(i)由(1)知,,设,则,,因为平面,所以,由(1)知所以,解得,所以.(ii)因为平面,所以点P到平面的距离,即为直线PQ到平面的距离,,所以点P到平面的距离为,即直线PQ到平面的距离为19.在平面直角坐标系xOy中,利用公式①(其中a,b,c,d为常数),将点P(x,y)的坐标变换为点,我们称该变换为线性变换,也称①为坐标变换公式,该变换公式①可由a,b,c,d组成的正方形数表唯一确定,我们将,称为二阶矩阵,矩阵通常用大写英文字母A,B,表示.依据以上信息,处理以下问题:(1)已知点按照二阶矩阵变换n次得到点,求点的坐标;(2)如图,将点P(x,y)绕原点O按逆时针旋转角得到点到原点距离不变),求坐标变换公式及对应的二阶矩阵(3)如图,y轴与直线是函数所对应的曲线C的两条渐近线,判断C是否为双曲线,若是请给予证明,若不是请说明理由.【答案】(1)(2)坐标变换公式为(3)是,证明见解析【解析】【分析】(1)设,通过计算整理可得答案;(2)设,,则,,,利用两角和正弦及余弦公式计算即可;(3)设图象上任一点P(x,y)绕原点逆时针旋转后得到点,由(2)可知代入,得即可证明.【小问1详解】记,由题意得即,即【小问2详解】设,,则,,,故,,所以坐标变换公式为该变换所对应的二阶矩阵为【小问3详解】曲线C是双曲线.证明:考虑双曲线的图象关于两条渐近线的夹角的角平分线对称,设y轴与直线的角平分线与y轴所夹的锐角为,y轴与直线所夹的锐角为,则,易知,,由于,所以,,设图象上任一点P(x,y)绕原点逆时针旋转后得到点,由(2)可知:所以代入,得,旋转后对应曲线方程为:,即曲线C绕原点逆时针旋转后为焦点在y轴上,对称中心为坐标原点的双曲线,所以曲线C是双曲线.【点睛】方法点睛:利用三角函数的定义解题:角的始边与轴正半轴重合;在角的终边上任取一点,该点到原点的距离,则:;;.
河南省开封市2024-2025学年高二上学期1月期末调研考试数学试题 Word版含解析
2025-03-28
·
15页
·
1 M
VIP会员专享最低仅需0.2元/天
VIP会员免费下载,付费最高可省50%
开通VIP
导出为PDF
图片预览模式
文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片