专题04 立体几何(原卷版)

2023-11-23 · 13页 · 1.2 M

五年(2019-2023)年高考真题分项汇编专题04立体几何考点一空间几何体的侧面积和表面积1.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为 A.2 B. C.4 D.2.(2022•上海)已知圆柱的高为4,底面积为,则圆柱的侧面积为 .3.(2021•上海)已知圆柱的底面圆半径为1,高为2,为上底面圆的一条直径,是下底面圆周上的一个动点,则的面积的取值范围为 .4.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为 .5.(2019•上海)一个直角三角形的两条直角边长分别为1和2,将该三角形分别绕其两个直角边旋转得到的两个圆锥的体积之比为 A.1 B.2 C.4 D.86.(2020•浙江)已知圆锥的侧面积(单位:为,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:是 . 7.(2022•新高考Ⅱ)已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为 A. B. C. D.8.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为,半径为的球,其上点的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为,该卫星信号覆盖地球表面的表面积(单位:,则占地球表面积的百分比约为 A. B. C. D.考点二空间几何体的体积9.(2022•新高考Ⅰ)已知正四棱锥的侧棱长为,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是 A., B., C., D.,10.(2022•新高考Ⅰ)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为.将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为 A. B. C. D.11.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为 A. B. C. D.12.【多选】(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:的正方体容器(容器壁厚度忽略不计)内的有 A.直径为的球体 B.所有棱长均为的四面体 C.底面直径为,高为的圆柱体 D.底面直径为,高为的圆柱体13.【多选】(2022•新高考Ⅱ)如图,四边形为正方形,平面,,.记三棱锥,,的体积分别为,,,则 A. B. C. D.14.【多选】(2021•新高考Ⅰ)在正三棱柱中,,点满足,其中,,,,则 A.当时,△的周长为定值 B.当时,三棱锥的体积为定值 C.当时,有且仅有一个点,使得 D.当时,有且仅有一个点,使得平面15.(2023•新高考Ⅱ)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为 .16.(2023•新高考Ⅰ)在正四棱台中,,,,则该棱台的体积为 .17.(2020•海南)已知正方体的棱长为2,、分别为、的中点,则三棱锥的体积为 .18.(2022•上海)如图所示三棱锥,底面为等边,为边中点,且底面,.(1)求三棱锥体积;(2)若为中点,求与面所成角大小.19.(2020•上海)已知四棱锥,底面为正方形,边长为3,平面. (1)若,求四棱锥的体积;(2)若直线与的夹角为,求的长.考点三空间中直线与直线之间的位置关系20.(2022•上海)如图正方体中,、、、分别为棱、、、的中点,联结,.空间任意两点、,若线段上不存在点在线段、上,则称两点可视,则下列选项中与点可视的为 A.点 B.点 C.点 D.点21.(2021•浙江)如图,已知正方体,,分别是,的中点,则 A.直线与直线垂直,直线平面 B.直线与直线平行,直线平面 C.直线与直线相交,直线平面 D.直线与直线异面,直线平面22.(2020•上海)在棱长为10的正方体中,为左侧面上一点,已知点到的距离为3,到的距离为2,则过点且与平行的直线交正方体于、两点,则点所在的平面是 A. B. C. D.23.(2023•上海)如图所示,在正方体中,点为边上的动点,则下列直线中,始终与直线异面的是 A. B. C. D.考点四异面直线及其所成的角24.【多选】(2022•新高考Ⅰ)已知正方体,则 A.直线与所成的角为 B.直线与所成的角为 C.直线与平面所成的角为 D.直线与平面所成的角为考点五空间中直线与平面之间的位置关系25.(2019•上海)已知平面、、两两垂直,直线、、满足:,,,则直线、、不可能满足以下哪种关系 A.两两垂直 B.两两平行 C.两两相交 D.两两异面26.【多选】(2021•新高考Ⅱ)如图,下列正方体中,为底面的中心,为所在棱的中点,,为正方体的顶点,则满足的是 A. B. C. D.考点六直线与平面所成的角27.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为,地球上一点的纬度是指与地球赤道所在平面所成角,点处的水平面是指过点且与垂直的平面.在点处放置一个日晷,若晷面与赤道所在平面平行,点处的纬度为北纬,则晷针与点处的水平面所成角为 A. B. C. D.28.(2021•上海)如图,在长方体中,已知,.(1)若是棱上的动点,求三棱锥的体积;(2)求直线与平面的夹角大小.29.(2021•浙江)如图,在四棱锥中,底面是平行四边形,,,,,,分别为,的中点,,.(Ⅰ)证明:;(Ⅱ)求直线与平面所成角的正弦值. 30.(2020•海南)如图,四棱锥的底面为正方形,底面.设平面与平面的交线为.(1)证明:平面;(2)已知,为上的点,,求与平面所成角的正弦值.31.(2020•上海)已知是边长为1的正方形,正方形绕旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形绕逆时针旋转至,求线段与平面所成的角.32.(2020•山东)如图,四棱锥的底面为正方形,底面.设平面与平面的交线为.(1)证明:平面;(2)已知,为上的点,求与平面所成角的正弦值的最大值. 33.(2020•浙江)如图,在三棱台中,平面平面,,.(Ⅰ)证明:;(Ⅱ)求直线与平面所成角的正弦值.34.(2019•上海)如图,在长方体中,为上一点,已知,,,.(1)求直线和平面的夹角;(2)求点到平面的距离.35.(2019•浙江)如图,已知三棱柱,平面平面,,,,,分别是,的中点.(Ⅰ)证明:;(Ⅱ)求直线与平面所成角的余弦值. 考点七二面角的平面角及求法36.(2022•浙江)如图,已知正三棱柱,,,分别是棱,上的点.记与所成的角为,与平面所成的角为,二面角的平面角为,则 A. B. C. D.37.(2019•浙江)设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点).记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则 A., B., C., D.,38.【多选】(2023•新高考Ⅱ)已知圆锥的顶点为,底面圆心为,为底面直径,,,点在底面圆周上,且二面角为,则 A.该圆锥的体积为 B.该圆锥的侧面积为 C. D.的面积为39.(2023•上海)已知直四棱柱,,,,,.(1)证明:直线平面;(2)若该四棱柱的体积为36,求二面角的大小. 40.(2023•新高考Ⅱ)如图,三棱锥中,,,,为中点.(1)证明;(2)点满足,求二面角的正弦值.41.(2023•新高考Ⅰ)如图,在正四棱柱中,,.点,,,分别在棱,,,上,,,.(1)证明:;(2)点在棱上,当二面角为时,求.42.(2022•浙江)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设,分别为,的中点.(Ⅰ)证明:;(Ⅱ)求直线与平面所成角的正弦值. 43.(2022•新高考Ⅱ)如图,是三棱锥的高,,,为的中点.(1)证明:平面;(2)若,,,求二面角的正弦值.44.(2022•新高考Ⅰ)如图,直三棱柱的体积为4,△的面积为.(1)求到平面的距离;(2)设为的中点,,平面平面,求二面角的正弦值.45.(2021•新高考Ⅱ)在四棱锥中,底面是正方形,若,,.(Ⅰ)求证:平面平面;(Ⅱ)求二面角的平面角的余弦值.46.(2021•新高考Ⅰ)如图,在三棱锥中,平面平面,,为的中点. (1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.考点八立体几何的交线问题47.(2020•山东)已知直四棱柱的棱长均为2,.以为球心,为半径的球面与侧面的交线长为 . 公众号:高中试卷

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐