高考数学专题15 圆锥曲线新定义问题-高考数学圆锥曲线重难点专题突破(全国通用)(原卷版)

2023-11-18 · 7页 · 316.9 K

专题15圆锥曲线新定义问题一、单选题1.若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对偶椭圆”的是()A. B. C. D.2.已知、是双曲线或椭圆的左、右焦点,若椭圆或双曲线上存在点,使得点,且存在△,则称此椭圆或双曲线存在“点”,下列曲线中存在“点”的是()A. B.C. D.3.若曲线上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是()A. B.C. D.4.在平面直角坐标系中,定义称为点的“和”,其中为坐标原点,对于下列结论:(1)“和”为1的点的轨迹围成的图形面积为2;(2)设是直线上任意一点,则点的“和”的最小值为2;(3)设是直线上任意一点,则使得“和”最小的点有无数个”的充要条件是;(4)设是椭圆上任意一点,则“和”的最大值为.其中正确的结论序号为()A.(1)(2)(3) B.(1)(2)(4)C.(1)(3)(4) D.(2)(3)(4)5.已知椭圆的焦点为、,若点在椭圆上,且满足(其中为坐标原点),则称点为“★”点.下列结论正确的是()A.椭圆上的所有点都是“★”点B.椭圆上仅有有限个点是“★”点C.椭圆上的所有点都不是“★”点D.椭圆上有无穷多个点(但不是所有的点)是“★”点6.在平面内,曲线上存在点P,使点P到点A(3,0),B(-3,0)的距离之和为10,则称曲线C为“有用曲线”.以下曲线不是“有用曲线”的是( )A. B.C. D.7.已知椭圆的左、右焦点分别是,若,则称椭圆为“黄金椭圆”.则下列三个命题中正确命题的序号是()①在黄金椭圆中,成等比数列;②在黄金椭圆中,若上顶点、右顶点分别为,则;③在黄金椭圆中,以为顶点的菱形的内切圆过焦点.A.①② B.①③ C.②③ D.①②③8.已知点在曲线上,⊙过原点,且与轴的另一个交点为,若线段,⊙和曲线上分别存在点、点和点,使得四边形(点,,,顺时针排列)是正方形,则称点为曲线的“完美点”.那么下列结论中正确的是().A.曲线上不存在”完美点”B.曲线上只存在一个“完美点”,其横坐标大于C.曲线上只存在一个“完美点”,其横坐标大于且小于D.曲线上存在两个“完美点”,其横坐标均大于二、多选题9.定义:以双曲线的实轴为虚轴,虚轴为实轴的双曲线与原双曲线互为共轭双曲线.以下关于共轭双曲线的结论正确的是()A.与共轭的双曲线是B.互为共轭的双曲线渐近线不相同C.互为共轭的双曲线的离心率为、则D.互为共轭的双曲线的个焦点在同一圆上10.数学家称为黄金比,记为ω.定义:若椭圆的短轴与长轴之比为黄金比ω,则称该椭圆为“黄金椭圆”.以椭圆中心为圆心,半焦距长为半径的圆称为焦点圆.若黄金椭圆”:与它的焦点圆在第一象限的交点为Q,则下列结论正确的有()A. B.黄金椭圆离心率C.设直线OQ的倾斜角为θ,则 D.交点Q坐标为(b,ωb)11.发现土星卫星的天文学家乔凡尼卡西尼对把卵形线描绘成轨道有兴趣.像笛卡尔卵形线一样,笛卡尔卵形线的作法也是基于对椭圆的针线作法作修改,从而产生更多的卵形曲线.卡西尼卵形线是由下列条件所定义的:曲线上所有点到两定点(焦点)的距离之积为常数.已知:曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数的点的轨迹,则下列命题中正确的是()A.曲线C过坐标原点B.曲线C关于坐标原点对称C.曲线C关于坐标轴对称D.若点在曲线C上,则的面积不大于12.曲率半径是用来描述曲线上某点处曲线弯曲变化程度的量,已知对于曲线上点处的曲率半径公式为,则下列说法正确的是()A.对于半径为的圆,其圆上任一点的曲率半径均为B.椭圆上一点处的曲率半径的最大值为C.椭圆上一点处的曲率半径的最小值为D.对于椭圆上点处的曲率半径随着的增大而减小三、填空题13.在平面直角坐标系xOy中,点M不与原点О重合,称射线OM与的交点N为点M的“中心投影点”,曲线上所有点的“中心投影点”构成的曲线长度是_______14.已知曲线的方程为,集合,若对于任意的,都存在,使得成立,则称曲线为曲线.下列方程所表示的曲线中,是曲线的有__________(写出所有曲线的序号)①;②;③;④15.已知两定点,若直线上存在点,使得,则该直线为“型直线”.给出下列直线,其中是“型直线”的是___________.①②③④16.在平面直角坐标系中,当不是原点时,定义的“伴随点”为,当P是原点时,定义“伴随点”为它自身,现有下列命题:①若点A的“伴随点”是点,则点的“伴随点”是点.②单元圆上的“伴随点”还在单位圆上.③若两点关于x轴对称,则他们的“伴随点”关于y轴对称④若三点在同一条直线上,则他们的“伴随点”一定共线.其中的真命题是.四、解答题17.已知椭圆:,点为椭圆短轴的上端点,为椭圆上异于点的任一点,若点到点距离的最大值仅在点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”.(1)若,判断椭圆是否为“圆椭圆”;(2)若椭圆是“圆椭圆”,求的取值范围.18.定义:由椭圆的两个焦点和短轴的一个端点组成的三角形称为该椭圆的“特征三角形”.若两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将“特征三角形”的相似比称为椭圆的相似比.已知椭圆,椭圆与是“相似椭圆”,已知椭圆的短半轴长为.(1)写出椭圆的方程(用表示);(2)若椭圆的焦点在轴上,且上存在两点,关于直线对称,求实数的取值范围.19.给定椭圆C:(a>b>0),称圆心在原点O,半径为的圆为椭圆C的“准圆”.若椭圆C的一个焦点为F(,0),其短轴上的一个端点到F的距离为.(1)求椭圆C的方程和其“准圆”方程;(2)若点P是椭圆C的“准圆”上的动点,过点P作椭圆的切线l1,l2交“准圆”于点M,N.证明:l1⊥l2,且线段MN的长为定值.20.给定椭圆(),称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”,若椭圆右焦点坐标为,且过点.(1)求椭圆的“伴随圆”方程;(2)在椭圆的“伴随圆”上取一点,过该点作椭圆的两条切线、,证明:两切线垂直;(3)在双曲线上找一点作椭圆的两条切线,分别交于切点、,使得,求满足条件的所有点的坐标.21.给定椭圆,称圆心在原点、半径为的圆是椭圆的“卫星圆”,若椭圆的离心率为,点在上.(1)求椭圆的方程和其“卫星圆”方程;(2)点是椭圆的“卫星圆”上的一个动点,过点作直线、使得,与椭圆都只有一个交点,且、分别交其“卫星圆”于点、,证明:弦长为定值.22.在平面直角坐标系中,对于点、直线,我们称为点到直线的方向距离.(1)设双曲线上的任意一点到直线,的方向距离分别为,求的值;(2)设点、到直线的方向距离分别为,试问是否存在实数,对任意的都有成立?说明理由;(3)已知直线和椭圆,设椭圆的两个焦点到直线的方向距离分别为满足,且直线与轴的交点为、与轴的交点为,试比较的长与的大小.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐