专题04 概率统计大题(原卷版)

2024-03-02 · 23页 · 1.6 M

专题04概率统计大题解题秘籍数字样本特征众数:在一组数据中出现次数最多的数中位数:将一组数据按从小到大(或从大到小)的顺序排列,如果为奇数个,中位数为中间数;若为偶数个,中位数为中间两个数的平均数平均数:,反映样本的平均水平方差:反映样本的波动程度,稳定程度和离散程度;越大,样本波动越大,越不稳定;越小,样本波动越小,越稳定;标准差:,标准差等于方差的算术平方根,数学意义和方差一样极差:等于样本的最大值最小值求随机变量X的分布列的步骤:(1)理解X的意义,写出X可能取得全部值;(2)求X取每个值的概率;(3)写出X的分布列;(4)根据分布列的性质对结果进行检验.还可判断随机变量满足常见分布列:两点分布,二项分布,超几何分布,正态分布.求随机变量的期望和方差的基本方法:(1)已知随机变量的分布列,直接利用期望和方差公式直接求解;(2)已知随机变量的期望、方差,求的期望与方差,利用期望和方差的性质(,)进行计算;(3)若能分析出所给的随机变量服从常用的分布(如:两点分布、二项分布等),可直接利用常用分布列的期望和方差公式进行计算,若~,则,.4.求解概率最大问题的关键是能够通过构造出不等关系,结合组合数公式求解结果5.线性回归分析解题方法:(1)计算的值;(2)计算回归系数;(3)写出回归直线方程.线性回归直线方程为:,,其中为样本中心,回归直线必过该点(4)线性相关系数(衡量两个变量之间线性相关关系的强弱),正相关;,负相关独立性检验解题方法:(1)依题意完成列联表;(2)用公式求解;(3)对比观测值即可得到所求结论的可能性独立性检验计算公式:模拟训练一、解答题1.(22·23下·长沙·二模)首批全国文明典范城市将于2023年评选,每三年评选一次,2021年长沙市入选为全国文明典范城市试点城市,目前我市正全力争创首批全国文明典范城市,某学校号召师生利用周末从事创建志愿活动.高一(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宣传员、文明监督员三项可供选择,每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为,每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不影响,求:(1)在有女生参加活动的条件下,恰有一名女生的概率;(2)记随机选取的两人得分之和为X,求X的期望.2.(22·23·深圳·二模)某人玩一项有奖游戏活动,其规则是:有一个质地均匀的正四面体(每个面均为全等的正三角形的三棱锥),四个面上分别刻着1,2,3,4,抛掷该正四面体5次,记录下每次与地面接触的面上的数字.(1)求接触面上的5个数的乘积能被4整除的概率;(2)若每次抛掷到接触地面的数字为3时奖励200元,否则倒罚100元,①设甲出门带了1000元来参加该游戏,记游戏后甲身上的钱为X元,求;②若在游戏过程中,甲决定当自己赢了的钱一旦不低于300元时立即结束游戏,求甲不超过三次就结束游戏的概率.3.(22·23·保定·二模)某学校为了提高学生的运动兴趣,增强学生身体素质,该校每年都要进行各年级之间的球类大赛,其中乒乓球大赛在每年“五一”之后举行,乒乓球大赛的比赛规则如下:高中三个年级之间进行单循环比赛,每个年级各派5名同学按顺序比赛(赛前已确定好每场的对阵同学),比赛时一个年级领先另一个年级两场就算胜利(即每两个年级的比赛不一定打满5场),若两个年级之间打成则第5场比赛定胜负.已知高三每位队员战胜高二相应对手的可能性均为,高三每位队员战胜高一相应对手的可能性均为,高二每位队员战胜高一相应对手的可能性均为,且队员、年级之间的胜负相互独立.(1)求高二年级与高一年级比赛时,高二年级与高一年级在前两场打平的条件下,最终战胜高一年级的概率.(2)若获胜年级积3分,被打败年级积0分,求高三年级获得积分的分布列和期望.4.(22·23下·盐城·三模)2021年奥运会我国射击项目收获丰盛,在我国射击也是一项历史悠久的运动.某射击运动爱好者甲来到靶场练习.(1)已知用于射击打靶的某型号枪支弹夹中一共有发子弹,甲每次打靶的命中率均为,一旦出现子弹脱靶或者子弹打光便立即停止射击.记标靶上的子弹数量为随机变量,求的分布列和数学期望;(2)若某种型号的枪支弹巢中一共可装填6发子弹,现有一枪支其中有发为实弹,其余均为空包弹,现规定:每次射击后,都需要在下一次射击之前填充一发空包弹,假设每次射击相互独立且均随机,在进行次射击后,记弹巢中空包弹的发数为,①当时,请直接写出数学期望与的关系;②求出关于的表达式.5.(22·23下·浙江·二模)甲、乙两个学校分别有位同学和n位同学参加某项活动,假定所有同学成功的概率都是,所有同学是否成功互不影响.记事件A=“甲成功次数比乙成功次数多一次”,事件B=“甲成功次数等于乙成功次数”.(1)若,求事件A发生的条件下,恰有5位同学成功的概率;(2)证明:.6.(22·23·龙岩·二模)为了丰富孩子们的校园生活,某校团委牵头,发起体育运动和文化项目比赛,经过角逐,甲、乙两人进入最后的决赛.决赛先进行两天,每天实行三局两胜制,即先赢两局的人获得该天胜利,此时该天比赛结束.若甲、乙两人中的一方能连续两天胜利,则其为最终冠军;若前两天甲、乙两人各赢一天,则第三天只进行一局附加赛,该附加赛的获胜方为最终冠军设每局比赛甲获胜的概率为,每局比赛的结果没有平局且结果互相独立.(1)记第一天需要进行的比赛局数为X,求X的分布列及;(2)记一共进行的比赛局数为Y,求.7.(22·23下·湖南·二模)影响身高的因素主要有以下凡点:第一、遗传,遗传基因直接影响人种、身高,第二、睡眠,身高的增长非常依赖于睡眠的质量,睡眠的时间有保障,晚上分泌的生长激素可以很好地作用于人体的骨骼,使人体增高.第三、营养,营养物质特别是蛋白质、钙、铁等要补充充分,为孩子增长身体提供原料、第四、运动,运动影响儿童身高非常明显,运动可以直接促进生长激素的分泌,使生长激素在夜晚增大分泌,促进食欲,还能保证健康的睡眠等等,对于长高有很大帮助.高中学生由于学业压力,缺少睡眠与运动等原因,导致身高偏矮;但同时也会由于营养增加与遗传等原因,导致身高偏高,某市教育局为督促各学校保证学生充足的睡眠、合理的营养搭配和体育锻炼时间,减轻学生学习压力,准备对各校男生身高指数进行抽查,并制定了身高指数档次及所对应得分如下表:档次偏矮正常偏高超高男生身高指数(单位:)学生得分50708090某校为迎接检查,学期初通过调查统计得到该校高三男生身高指数服从正态分布,并调整睡眠时间、合理的营养搭配和体育锻炼.6月中旬,教育局聘请第三方机构抽查的该校高三30名男生的身高指数频数分布表如下:档次偏矮正常偏高超高男生身高指数(单位:)人数39126(1)试求学校调整前高三男生身高指数的偏矮率、正常率、偏高率、超高率;(2)请你从偏高率、超高率、男生身高指数平均得分三个角度评价学校采取揹施的效果.附:参考数据与公式:若,则①;②;③.8.(22·23·德州·三模)某学校组织“一带一路”答题闯关活动,每位参赛选手需要回答三个问题,对于前两个问题,每个问题回答正确得10分,回答错误得0分;第三个问题回答正确得20分,回答错误扣10分,规定每位参赛选手回答这三个问题的总分不低于30分就算闯关成功.选手小明回答前两个问题正确的概率都是,回答第三个问题正确的概率是,且各题回答正确与否相互独立.(1)求小明回答正确至少两个问题的概率;(2)求小明回答这三个问题的总得分的分布列,并求数学期望和闯关成功的概率.9.(22·23·三明·三模)在二十大报告中,体育、健康等关键词被多次提及,促进群众体育和竞技体育全面发展,加快建设体育强国是全面建设社会主义现代化国家的一个重要目标.某校为丰富学生的课外活动,加强学生体质健康,拟举行羽毛球团体赛,赛制采取局胜制,每局都是单打模式,每队有名队员,比赛中每个队员至多上场一次且是否上场是随机的,每局比赛结果互不影响.经过小组赛后,最终甲、乙两队进入最后的决赛,根据前期比赛的数据统计,甲队种子选手对乙队每名队员的胜率均为,甲队其余名队员对乙队每名队员的胜率均为.(注:比赛结果没有平局)(1)求甲队最终获胜且种子选手上场的概率;(2)已知甲队获得最终胜利,求种子选手上场的概率.10.(22·23·深圳·二模)某校体育节组织定点投篮比赛,每位参赛选手共有3次投篮机会.统计数据显示,每位选手投篮投进与否满足:若第次投进的概率为,当第次投进时,第次也投进的概率保持不变;当第次没能投进时,第次能投进的概率降为.(1)若选手甲第1次投进的概率为,求选手甲至少投进一次的概率;(2)设选手乙第1次投进的概率为,每投进1球得1分,投不进得0分,求选手乙得分的分布列与数学期望.11.(22·23下·益阳·三模)2022年北京冬奥会圆满落幕,随后多所学校掀起了“雪上运动”的热潮.为了解学生对“雪上运动”的喜爱程度,某学校从全校学生中随机抽取200名学生进行问卷调查,得到以下信息:①抽取的学生中,男生占的比例为60%;②抽取的学生中,不喜欢雪上运动的学生占的比例为45%.③抽取的学生中,喜欢雪上运动的男生比喜欢雪上运动的女生多50人.(1)完成2×2列联表,依据小概率值α=0.001的χ²独立性检验,能否认为是否喜欢雪上运动与性别有关联?喜欢雪上运动不喜欢雪上运动合计男生女生合计(2)(i)从随机抽取的这200名学生中采用分层抽样的方法抽取20人,再从这20人中随机抽取3人.记事件A=“至少有2名是男生”,事件B=“至少有2名喜欢雪上运动的男生”,事件C=“至多有1名喜欢雪上运运的女生”.试分别计算和的值.(ii)根据第(i)问中的结果,分析与的大小关系.参考公式及数据,.0.100.050.0100.0012.7063.8416.63510.82812.(22·23·广州·三模)某学校开展“争做文明学生,共创文明城市”的创文知识问答竞赛活动,现从全校参与该活动的学生中随机抽取100名学生的竞赛成绩(单位:分),并以此为样本绘制了如下频率分布直方图.  (1)求该100名学生竞赛成绩的第80百分位数;(2)学校拟对被抽取的100名学生进行奖励,奖励方案如下:用频率估计概率,得分小于或等于70的学生获得1次抽奖机会,得分高于70的学生获得2次抽奖机会.假定每次抽奖抽到价值10元的学习用品的概率为,抽到价值20元的学习用品的概率为.从这100名学生中任取一位,记该同学在抽奖活动中获得学习用品的价值总额为元,求的分布列和数学期望(用分数表示),并估算此次抽奖要准备的学习用品的价值总额.13.(22·23·衡水·三模)某医疗科研小组为研究某市市民患有疾病与是否具有生活习惯的关系,从该市市民中随机抽查了100人,得到如下数据:疾病生活习惯具有不具有患病2515未患病2040(1)依据的独立性检验,能否认为该市市民患有疾病与是否具有生活习惯有关?(2)从该市市民中任选一人,表示事件“选到的人不具有生活习惯”,表示事件“选到的人患有疾病”,试利用该调查数据,给出的估计值;(3)从该市市民中任选3人,记这3人中具有生活习惯,且末患有疾病的人数为,试利用该调查数据,给出的数学期望的估计值.附:,其中.    0.100.050.0100.001    2.7063.8416.63510.82814.(22·23·衡水·一模)温室是以采光覆盖材料作为全部或部分围护结构材料,具有透光、避雨、保温、控温等功能,可在冬季或其他不适宜露地植物生长的季节供栽培植物的建筑,而温室蔬菜种植技术是一种比较常见的技术,它具有较好的保温性能,使人们在任何时间都可吃到反季节的蔬菜,深受大众喜爱.温室蔬菜生长和蔬菜产品卫生质量要求的温室内土壤、灌溉

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐