学易金卷2025年高考考前押题密卷数学(天津卷)-学易金卷:高考考前押题密卷(考试版A3)

2025-04-12 · 3页 · 859.2 K

2025高考考前押题密卷高三数学天津卷)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共9小题,每小题5分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则(    )A. B. C. D.2.设,则“”是“”的(      )A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件3.杭州亚运会的成功举行,让世界进一步了解中国,志愿者们的微笑,也温暖了全世界.运动会期间,需从4位志愿者中选3位安排到三个不同的工作岗位,每个岗位1人,其中甲不能安排在岗位,则不同的安排方法共有(    )A.9种 B.12种 C.15种 D.18种4.设,则的大小关系为(    ).A. B. C. D.5.已知函数的部分图象如图所示,其中,,则(    )A. B.C.直线是图象的一条对称轴 D.是图象的一个对称中心6.《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为,高为.首先,在圆桶的外侧面均匀包上一层厚度为的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:)(    )A. B. C. D.7.已知菱形的边长为,动点在边上(包括端点),则的取值范围是(    )A. B. C. D.8.如图所示,过双曲线的左焦点作圆的切线,切点为,切线与一条渐近线交于点,若,则双曲线的离心率为(    )A.2 B. C. D.9.对任意两个非零的平面向量和,定义:,.若平面向量满足,且和都在集合中,则(    )A.1 B. C.1或 D.1或第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.10.已知为虚数单位,,复数在复平面内对应的点在第四象限,写出满足题意的的一个值为.11.的展开式中的系数为.12.已知直线与圆交于两点,直线垂直平分弦,则的值为.13.某电视台举办知识竞答闯关比赛,每位选手闯关时需要回答三个问题.第一个问题回答正确得10分,回答错误得0分;第二个问题回答正确得20分,回答错误得0分;第三个问题回答正确得30分,回答错误得分.规定,每位选手回答这三个问题的总得分不低于30分就算闯关成功.若某位选手回答前两个问题正确的概率都是,回答第三个问题正确的概率是,且各题回答正确与否相互之间没有影响.则该选手仅回答正确两个问题的概率是;该选手闯关成功的概率是.14.窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一,图1是一个正八边形窗花隔断,图2是从窗花图中抽象出的几何图形的示意图.如图2,正八边形ABCDEFGH内角和为1080°,若(,),则的值为;若正八边形ABCDEFGH的边长为2,P是正八边形ABCDEFGH八条边上的动点,则的最小值为.  15.已知函数在区间内恰有2个极值点和3个零点,则的取值范围是.三、解答题:本大题共75分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.16.(本小题满分14分)在中,角A,B,C的对边分别为a,b,c,求:(1)a和c的值;(2)的值.17.(本小题满分15分)如图,在四棱锥P-ABCD中,AP,AB,AD两两垂直,AD=AP=4,AB=BC=2,AD∥BC,M为线段PC上一点(端点除外). (1)若异面直线BM,AP所成角的余弦值为,求PM的长;(2)求二面角B-PC-D的平面角的正弦值.18.(本小题满分15分)已知为等差数列,是公比为2的等比数列.,且.(1)求数列和的通项公式;(2)若①当为奇数,求;②求.19.(本小题满分15分)已知椭圆,点、分别为椭圆的左、右焦点.(1)若椭圆上点满足,求的值;(2)点为椭圆的右顶点,定点在轴上,若点为椭圆上一动点,当取得最小值时点恰与点重合,求实数的取值范围;(3)已知为常数,过点且法向量为的直线交椭圆于、两点,若椭圆上存在点满足(),求的最大值.20.(本小题满分16分)设函数,.(1)若,求函数的单调区间;(2)若,试判断函数在区间内的极值点的个数,并说明理由;(3)求证:对任意的正数,都存在实数,满足:对任意的,.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐