2024新高考数学基础卷5(原卷版)-2024年高考数学综合赢在寒假•山东专用(5基础卷+5提升卷)

2024-02-03 · 6页 · 505.5 K

2024高考数学综合基础卷【赢在寒假山东专用(五)班级_______姓名:_______考号:_______单项选择题(本大题共8题,每小题5分,共计40分。每小题列出的四个选项中只有一项是最符合题目要求的)1.设集合或,若,则的取值范围是(    )A.或B.或C. D.2.若,其中,则(    )A. B. C. D.3.宋代制酒业很发达,为了存储方便,酒缸是要一层一层堆起来的,形成堆垛,用简便的方法算出堆垛中酒缸的总数,古代称之为堆垛术.有这么一道关于“堆垛”求和的问题:将半径相等的圆球堆成一个三角垛,底层是每边为个圆球的三角形,向上逐层每边减少一个圆球,顶层为一个圆球,我们发现,当,2,3,4时,圆球总个数分别为1,4,10,20,则时,圆球总个数为(    )A.30 B.35 C.40 D.454.保定的府河发源于保定市西郊,止于白洋淀藻杂淀,全长26公里.府河作为保定城区主要的河网水系,是城区内主要的排沥河道.府河桥其桥拱曲线形似悬链线,桥型优美,是我市的标志性建筑之一,悬链线函数形式为,当其中参数时,该函数就是双曲余弦函数,类似的有双曲正弦函数.若设函数,若实数满足不等式,则的取值范围为(    )A. B. C. D.5.过直线l:上一点P作圆M:的两条切线,切点分别是A,B,则四边形MAPB的面积最小值是(    )A.1 B. C.2 D.6.已知抛物线上一点到其焦点的距离为5,双曲线的左顶点为A且离心率为,若双曲线的一条渐近线与直线垂直,则双曲线的方程为(    )A. B. C. D.7.已知圆锥的顶点和底面圆周均在球的球面上.若该圆锥的底面半径为,高为6,则球的表面积为(    )A. B. C. D.8.已知实数,且,为自然对数的底数,则(    )A. B. C. D.多项选择题(本大题共4题,每小题5分,共计20分。每小题列出的四个选项中有多项是符合题目要求的,漏选得2分,多选或错选不得分)9.已知甲种杂交水稻近五年的产量(单位:t/hm2)数据为:9.8,10.0,10.0,10.0,10.2,乙种杂交水稻近五年的产量(单位:t/hm2)数据为:9.6,9.7,10.0,10.2,10.5,则()A.甲种的样本极差小于乙种的样本极差B.甲种的样本平均数等于乙种的样本平均数C.甲种的样本方差大于乙种的样本方差D.甲种的样本60百分位数小于乙种的样本60百分位数10.已知随机变量服从二项分布,其数学期望,随机变量服从正态分布,且,则(    )A. B.C. D.11.已知函数,则下列说法正确的有(    )A.函数为偶函数 B.函数的最小值为C.函数的最大值为 D.函数在上有两个极值点12.已知四棱柱的底面为正方形,,,则(    )A.点在平面内的射影在上B.平面C.与平面的交点是的重心D.二面角的大小为填空题(每小题5分,共计20分)13.某学校高一学生2人,高二学生2人,高三学生1人,参加A、B、C三个志愿点的活动.每个活动点至少1人,最多2人参与,要求同年级学生不去同一活动点,高三学生不去A活动点,则不同的安排方法有种.(用数字作答)14.如图,中点是线段上两个动点,且,则的最小值为.15.在平面直角坐标系中,已知点,直线:与圆:交于A,B两点,若为正三角形,则实数的值是.16.设过双曲线左焦点的直线与交于两点,若,且(O为坐标原点),则的离心率为四、解答题(解答题需写出必要的解题过程或文字说明,17题10分,其余各题每题各12分)17.(本小题满分10分)在①;②;③这三个条件中任选一个,补充在下面的问题中,并解决该问题.问题:在中,角A,B,C的对边分别为a,b,c,且满足___________.(1)求角A的大小;(2)若D为线段延长线上的一点,且,求的面积.18.(本小题满分12分)已知数列,当时,,.记数列的前项和为.(1)求,;(2)求使得成立的正整数的最大值.19.(本小题满分12分)如图,在三棱锥中,是正三角形,平面平面,,点,分别是,的中点.(1)证明:平面平面;(2)若,点是线段上的动点,问:点运动到何处时,平面与平面所成的锐二面角最小.20.(本小题满分12分)我国风云系列卫星可以监测气象和国土资源情况.某地区水文研究人员为了了解汛期人工测雨量x(单位:dm)与遥测雨量y(单位:dm)的关系,统计得到该地区10组雨量数据如下:样本号i12345678910人工测雨量xi5.387.996.376.717.535.534.184.046.024.23遥测雨量yi5.438.076.576.147.955.564.274.156.044.49|xiyi|0.050.080.20.570.420.030.090.110.020.26并计算得(1)求该地区汛期遥测雨量y与人工测雨量x的样本相关系数(精确到0.01),并判断它们是否具有线性相关关系;(2)规定:数组(xi,yi)满足|xiyi|<0.1为“Ⅰ类误差”;满足0.1≤|xiyi|<0.3为“Ⅱ类误差”;满足|xiyi|≥0.3为“Ⅲ类误差”.为进一步研究,该地区水文研究人员从“Ⅰ类误差”、“Ⅱ类误差”中随机抽取3组数据与“Ⅲ类误差”数据进行对比,记抽到“Ⅰ类误差”的数据的组数为X,求X的概率分布与数学期望.附:相关系数21.(本小题满分12分)已知曲线由和两部分组成,所在椭圆的离心率为,上、下顶点分别为,右焦点为与轴相交于点,四边形的面积为.(1)求的值;(2)若直线与相交于两点,,点在上,求面积的最大值.22.(本小题满分12分)已知函数,函数,其中.(1)判断函数在上的单调性,并说明理由;(2)证明:曲线与曲线有且只有一个公共点.

VIP会员专享最低仅需0.2元/天

VIP会员免费下载,付费最高可省50%

开通VIP

导出为PDF

图片预览模式

文字预览模式
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报
预览说明:图片预览排版和原文档一致,但图片尺寸过小时会导致预览不清晰,文字预览已重新排版并隐藏图片
相关精选
查看更多
更多推荐